Estimating bilateral relationships from aggregated data

Harald Badinger
WU, WIFO
Jesús Crespo Cuaresma
WU, IIASA, WIC, WIFO

Wirw - International Seminar
Vienna, December 2011

De aestimo aequationes bilateralis a data aggregata

Harald Badinger WU, WIFO
Jesús Crespo Cuaresma
WU, IIASA, WIC, WIFO

How it all Began ...

- We are interested in contagion effects of financial instability (measured by some variable z) and aim at estimating a model such as, for example,

$$
z=\mathbf{W} z+\mathbf{X}_{z} \beta_{z}+\varepsilon
$$

- We want to create spatial weighting matrices which are related to the (exogenously given) financial linkages between units, which may be related to geographical distance, but also to other exogenous variables
- In order to unveil the nature of such exogenous drivers of financial linkages, we estimate models such as

$$
y=\mathbf{X} \beta+u,
$$

where y measures, for example, bilateral portfolio flows

How it all began ...

- Big problem: bilateral data on financial linkages are not existing, only aggregated data are available
- Big solution: Estimating bilateral data from (nonlinearly) aggregated variables
- The method proposed can be used to:
- Perform inference on bilateral data when only aggregated data are available
- Create (time-varying) weight matrices for spatial models which go beyond geographical distance
- Specify models with spillover effects for phenomena for which data on linkages are not available

An EXAMPLE: BILATERAL TRADE RELATIONSHIPS

- The bilateral gravity model

$$
\log T_{i j}=\mathbf{X}_{i j} \beta+u_{i j}
$$

- The observed data

$$
T_{i}=\sum_{j} \exp \left(\log T_{i j}\right)
$$

- The model on aggregated/bilateral data

$$
T_{i}=\sum_{j} \exp \left(\log T_{i j}\right)=\sum_{j} \exp \left(\mathbf{X}_{i j} \beta+u_{i j}\right)
$$

The general setting

- The bilateral model

$$
\mathbf{y}=\mathbf{X} \beta+\mathbf{u}
$$

- The nonlinear aggregation constraint

$$
\mathbf{Y}=f(\mathbf{y})
$$

where \mathbf{Y} is $N \times 1$ (aggregate), observed (e.g., total financial openness), \mathbf{X} is $(N-1) N \times k$ (bilateral), observed (e.g., size, distance, common border ...) \mathbf{y} is is $(N-1) N \times 1$ (bilateral), unobserved (e.g., bilateral financial openness)

- Goal: Estimation of β from observed data

The case of gravity equations

- For our bilateral trade model

$$
f(\mathbf{y})=\mathbf{S} \exp (y)
$$

where

$$
\mathbf{S}=\left[\begin{array}{cccccccc}
1 & 1 & \ldots & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 1 & 1 & \ldots & 0 \\
\vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 1
\end{array}\right]_{N \times(N-1) N}
$$

- Bilateral data are nonlinearly transformed (exponentiated) and summed over partner countries

Estimation

- Following Proietti (JCGStat, 2006), we linearize the aggregation constraint around some value \mathbf{y}^{*},

$$
\mathbf{Y} \approx \mathbf{Y}^{*}+\mathbf{A}^{*}\left(\mathbf{y}-\mathbf{y}^{*}\right)
$$

where \mathbf{A}^{*} is the Jacobian evaluated at \mathbf{y}^{*}, with a typical element $a_{i j}=\partial f_{i} / \partial y_{j}$

- The model can be estimated in a straightforward manner using linear methods,

$$
\begin{aligned}
\mathbf{Y} & \approx \mathbf{Y}^{*}+\mathbf{A}^{*}\left(\mathbf{y}-\mathbf{y}^{*}\right), \\
\mathbf{Y}-\mathbf{Y}^{*}+\mathbf{A}^{*} \mathbf{y}^{*} & \approx \mathbf{A}^{*} \mathbf{y} \\
\mathbf{Y}-\mathbf{Y}^{*}+\mathbf{A}^{*} \mathbf{y}^{*} & \approx \mathbf{A}^{*}(\mathbf{X} \beta+\mathbf{u}), \\
\underbrace{\mathbf{Y}-\mathbf{Y}^{*}+\mathbf{A}^{*} \mathbf{y}^{*}}_{\tilde{\mathbf{Y}}^{*}} & \approx \underbrace{\mathbf{A}^{*} \mathbf{X}}_{\tilde{\mathbf{x}}^{*}} \beta+\underbrace{\mathbf{A}^{*} \mathbf{u}}_{\tilde{\mathbf{u}}^{*}} \\
\tilde{\mathbf{Y}}^{*} & \approx \tilde{\mathbf{X}}^{*} \beta+\tilde{\mathbf{u}}^{*}
\end{aligned}
$$

Estimation

- Iterative procedure
- Estimate β for the trial \mathbf{y}_{0}^{*}
- Construct artificial bilateral data as $\mathbf{y}_{1}^{*}=\mathbf{X}^{*} \hat{\beta}+\hat{\tilde{\mathbf{u}}}_{0}^{*}$
- Reestimate the model using \mathbf{y}_{1}^{*} as trial value
- Iterate until convergence
- How much voodoo is involved? A simulation study
- Simulated data using

$$
y_{i j}=0.5+0.1 x_{i j}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim \operatorname{NID}\left(0, \sigma^{2}\right)
$$

- $x_{i j} \sim \operatorname{NID}(0,1)$
- Aggregated data obtained as $Y_{i}=\sum_{j=1}^{J} \exp \left(y_{i j}\right)$ for $i=1, \ldots, I$
- Settings for size of dataset: $I=J=10, I=J=50$ and $I=J=100$
- Settings for error variance: $\sigma=0.1$ and $\sigma=0.25$
- Results based on 1000 replications

Simulation Results

Dimension	σ	Mean	Median	Std. Dev.	Skew.
10×10	0.1	0.102	0.101	0.037	0.197
10×10	0.25	0.102	0.098	0.109	0.079
50×50	0.1	0.100	0.100	0.015	0.021
50×50	0.25	0.108	0.107	0.040	-0.024
100×100	0.1	0.106	0.106	0.027	0.120
100×100	0.25	0.108	0.107	0.027	0.195

A small-Scale application: Intra-EU trade

- Bilateral trade flows for 14 EU countries (Austria, Belgium, Denmark, France, Germany, Italy, Netherlands, Sweden, Finland, Greece, Ireland, Portugal, Spain and the UK)
- The bilateral model

$$
\log T_{i j}=\beta_{0}+\beta_{1} \log \left(G D P_{i} \times G D P_{j}\right)+\beta_{2} \log d_{i j}+\varepsilon_{i j}
$$

- Aggregated model based on $T_{i}=\sum_{j} \exp \left(\log T_{i j}\right)$

	Bilateral data		Aggregated data	
Variable	Estimate	St. dev.	Estimate	St. dev
Intercept	-19.26	2.407	-19.23	0.734
$\log \left(G D P_{i} \times G D P_{j}\right)$	0.798	0.039	0.787	0.012
$\log d_{i j}$	-1.010	0.095	-0.924	0.029
R-squared	0.902		-	
Obs.	91		(aggregated data)	

A small-Scale application: Intra-EU trade

Figure: True versus fitted values of (log) bilateral trade based on the model with aggregated data

000000000

Towards a measure of bilateral financial

OPENNESS	Total	trade		portfolio		fdi	
	coeff.	se	coeff.	se	coeff.	se	
const	-5.521	0.414	-9.230	1.075	-3.482	0.773	
$\ln \left(Y_{i} Y_{j}\right)$	0.833	0.011	1.013	0.0298	0.913	0.0214	
$\ln D_{i j}$	-0.969	0.027	-1.166	0.071	-1.563	0.051	

EU-14	trade		portfolio		fdi										
	coeff.	se		coeff.		se	coeff.	se							
:---	:---	---:	---:	---:	---:	---:									
const	-2.396	0.541	-1.943	1.072	1.733	0.803									
$\ln \left(Y_{i} Y_{j}\right)$	0.778	0.015	0.837	0.030	0.791	0.022									
$\ln D_{i j}$	-1.264	0.036	-1.578	0.071	-1.900	0.053									

Conclusions

- We present a method to estimate bilateral models when bilateral data are not available, but some (nonlinear) aggregation of the dependent variable exists
- The method can be used to construct weighting matrices for spatial econometric models where "space" is understood as eventually encompassing other exogenous characteristics different from pure geographical distance
- Our method opens the door to the quantitative (spatial) analysis of socio-economic relationships whose study was hitherto impossible due to data constraints
- Research in progress: Use estimated time-varying exogenous bilateral financial openness as a building block for spatial models of financial instability contagion
- Forthcoming research questions: Migration models
- Model uncertainty can be built in the method in a relatively straightforward manner

