

Market Selection in Global Value Chains

P. Mundt, U. Cantner, H. Inoue, I. Savin, S. Vannuccini*

*Science Policy Research Unit (SPRU), University of Sussex Business School

WIIW/FIW Webinar - October 14, 2021

・ロト ・日 ・ モー・ モー・ つくぐ

1. Introduction

2. Literature

- 3. Data and productivity measurement
- 4. Empirical strategy

5. Conclusion

1. Introduction

2. Literature

3. Data and productivity measurement

4. Empirical strategy

5. Conclusion

Introduction /1

- What mechanism is behind market success in a competitive setting?
- the market selection hypothesis: competition acts as a Darwinian filter 'fitter' actors grow (gain market shares), less fit shrink/exit
- ▶ assumed relationship: better attributes (e.g. productivity) \Rightarrow superior performance
- while theoretically sound, (firm-level) empirical evidence of selection at work is scant
- possible explanations:
 - choice of irrelevant (or mismeasured) fitness indicator (e.g. a scalar)
 - wrong unit of analysis (e.g. industries vs market vs submarkets)
 - selection 'does not bite': reallocation of market shares to fitter (e.g. more productive) firms is limited, and aggregate advances depend mostly on within-firms learning processes
 - naïve interpretation of how selection works

- ► We argue that actors' performance cannot be considered in isolation: production linkages along value chains (VC) influence market selection ⇒ extended selection hypothesis
- In Cantner et al. (2019) we showed that 'regressive' developments of market selection can occur in certain VC layers but selection works as expected at the VC level
- we test this idea/theory on Global Value Chains (GVCs), using labour productivity as 'fitness'
- expectation: a producer's productivity that incorporates the contribution of upstream suppliers will have more explanatory power on performance compared to idiosyncratic measures
- an 'eclectic' paper: unit of analysis are not firms, but country-sectors; less fine-grained, but allows to account for global markets and imported intermediates/trade

э.

ヘロン 人間 とくほ とくほ とう

Workhorse model: replicator dynamics (Metcalfe 1994; Mazzucato 1998)

generic form:

$$\dot{s}_i = \lambda s_i \left(f_i - \bar{f} \right), \bar{f} = \sum_i s_i f_i$$

- where s is actor's i market share (and dotted its change), f is the fitness indicator (e.g. productivity, (-)unit cost, product quality, etc.), and f is the share-weighted avg fitness; lambda is a parameter (speed of selection)
- extended replicator dynamics for a VC j composed by M layers:

$$\dot{s}_j = \lambda s_j \left(F_j - \bar{F} \right)$$

• where $F_j = \sum_{m=1}^{M} f_{j,m}$ with *F* aggregate fitness and *f* layer-specific fitness

1. Introduction

2. Literature

3. Data and productivity measurement

4. Empirical strategy

5. Conclusion

We build on (and contribute to) literature...

- ... on (firm-level) heterogeneity, market selection and industrial dynamics
 - equilibrium models based on Markov-perfect ID (Doraszelski and Satterthwaite 2010; Hopenhayn 1992) & evolutionary models based on the replicator principle (Winter et al. 2003)
 - different theories, similar empirical (non-parametric) approach: decomposition exercises/evolutionary accounting (Maliranta and Määttänen 2105; Metcalfe 2008)
- ... on how network structures and production linkages shape outcomes
 - ▶ at the behavioural/micro (Galeotti et al. 2010); and macro (Carvahlo and Grassi 2019) levels
 - related to innovation (Savin and Egbetokun 2016); industrial policy (Liu 2019); export (Laursen and Meliciani 2000); and corporate strategy (Wan and Wu 2017)

... on Global Value Chains

structure (Antras 2020); production stages' allocation and their geographical location (Chor 2019; Antras and De Gortari 2020); governance (Gereffi 2005); and measurement (Johnson 2018)

1. Introduction

2. Literature

3. Data and productivity measurement

4. Empirical strategy

5. Conclusion

Data

- ► World Input Output Database (WIOD) release 2016: network panel data on global production input linkages for the period 2000-2014; 43 countries (EU+other large economies tot ~ 85% world GDP in 2016) * 56 sectors ⇒ 2408 country-sectors
- unit of observation: country-sectors in the global market (rather than firms in a given sector)
- WIOD Socio-Economic Accounts

Productivity measurement

- ► in general, labour productivity (in line with the lit): value added per hour of labour (labour demand/requirement computed in I/O fashion as L = l(I A)⁻¹f):
- two indicators (for each country-sector)
 - 1. idiosyncratic productivity: ratio of a country-sector's gross output minus its intermediate use over the total hours worked in this particular country-sector
 - 2. value-chain productivity: ratio of the sum of value added across all layers of the GVC over the sum of both direct and indirect labour demand for producing a particular final good or service

1. Introduction

2. Literature

3. Data and productivity measurement

4. Empirical strategy

5. Conclusion

We conduct a three steps analysis

- **Step 1**. Decomposition analysis of productivity change: idiosyncratic vs value-chain
- ► Step 2. Regression analysis output growth ← productivity nexus: idiosyncratic vs value-chain
- Step 3. Spatial regression output growth ← productivity: focal producer + direct suppliers + indirect suppliers

э

- **Global** labour productivity of sector *j* (e.g. 'manufacture of computers') aggregating prod in that sector in all countries *i*: $\Pi_{j,t} = \sum_{i \in j} s_{i,t} \pi_{i,t}$
- dynamic decomposition of productivity change (Griliches and Regev 1995):

$$\Delta \Pi_{j,t} = \sum_{i \in j} \overline{s}_i \Delta \pi_{i,t} + \sum_{i \in j} \Delta s_{i,t} \overline{\pi}_i$$

- within and between components/effects: between as proxy of selection at work (if positive sign)
- we sum over the years (total effect of competition) and normalise following Dosi et al. (2015):

$$\left(\sum_{t}\sum_{i\in j}\Delta s_{i,t}\bar{\pi}_{i}\right) / \left(\sum_{t}\Delta\Pi_{j,t}\right) = \sum_{t}\left[\left(\frac{\sum_{i\in j}\Delta s_{i,t}\bar{\pi}_{i}}{\Delta\Pi_{j,t}}\right)\left(\frac{\Delta\Pi_{j,t}}{\sum_{t}\Delta\Pi_{j,t}}\right)\right]$$

Step 1: productivity decomposition /2

- Results: magnitude of between effect increases with the value-chain productivity measure
- ► Implication: the consideration of GVC linkages in a productivity-based fitness indicator facilitates the identification of selection effects ⇒ consistent with the extended selection hypothesis

Figure: Violin plot of distribution of sectoral between and within component

Step 2: regression analysis of output growth /1

- A direct test of the performance-productivity nexus: strength of competition resulting in sales growth, rather than share growth
- ▶ for each country-sector, we estimate the growth equation (as in Bottazzi et al. 2010):

$$g_{i,t} = a + b_t + \beta_\Delta \Delta \pi_{i,t} + \beta_m \bar{\pi}_{i,t} + c_i + \epsilon_{i,t}$$

- where $g_{i,t}$ is (log) growth rate of output of country-sector *i* from t 1 to *t*, b_t is a time dummy, c_i is a country fixed effect, and $\Delta \pi_{i,t}$ and $\bar{\pi}_{i,t}$ are respectively (log) growth and time avg level of labour productivity
- ▶ we estimate the equation for the two productivity measures, and calculate the Shapley decomposition S^2 of the R^2 to determine the explanatory power of $\Delta \pi_{i,t}$ and $\bar{\pi}_{i,t}$

$$S^2 = rac{\mathrm{Var}\left(eta_\Delta\Delta\pi_{i,t}+eta_mar\pi_{i,t}
ight)}{\mathrm{Var}\left(g_{i,t}
ight)}$$

- ► S² measures the share of the growth variance explained by the two productivity terms
- robustness check: include cross-sectional avgs of growth and prod variables to correct for cross-sectional dependence

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

4. Empirical strategy

Step 2: regression analysis of output growth /2

- ► **Results**: coefficient of $\Delta \pi_{i,t}$ is positive and statistically significant at the 0.1% level across all sectors; confirmed by S^2 decomposition: explanatory power of dynamic prod twice as higher than level for all sectors; value-chain measure provides more support for selection than idiosyncratic
- ► Implication: results of decomposition confirmed ⇒ consistent with the extended selection hypothesis

Figure: Explanatory power of idiosyncratic and value-chain productivity terms

- We separate the effect of idiosyncratic productivity and that of upstream linkages (suppliers)
- we estimate:

 $g_{i,t} = a + b_t + \beta_\Delta \Delta \pi_{i,t} + \beta_m \bar{\pi}_{i,t} + \gamma_\Delta SL(\Delta \pi_{i,t}) + \gamma_m SL(\bar{\pi}_{i,t}) + c_i + \epsilon_{i,t}$

- where $SL(\Delta \pi_{i,t})$ and $SL(\bar{\pi}_{i,t})$ are the weighted average productivity change/level of the direct and indirect suppliers of the focal country-sector *i*
- weights are obtained from the matrix of labour requirements excluding intra-sector transactions
- Results: in the majority of sectors SL terms explain at least as much variation in growth as the individual productivity term and their importance grows linearly with the dependence on suppliers;
- Implication: neglecting the role of suppliers in previous studies likely led to a systematic underestimation of the strength of market selection!

1. Introduction

2. Literature

3. Data and productivity measurement

4. Empirical strategy

5. Conclusion

(日) (日) (日) (日) (日) (日) (日)

Conclusions

In sum

- market selection might be a work, if 'correctly' captured
- we operationalised the model of Cantner et al. (2019) and tested the extended selection hypothesis on competition among country-sectors in global markets: trade-off between more aggregated data and mapping of competition/selection at global scale
- we assess both reallocation (between effect) and the growth-productivity nexus
- indirect (decomposition) and direct (regression) analyses confirm that selection has more explanatory power when fitness indicators (productivity) that include production linkages are used

Contribution

- support to the hp that production networks carry additional information to explaining focal actors' performance
- a novel use of WIOD
- an 'eclectic' combination of industrial dynamics/evol econ and international trade approaches

・ロト ・四ト ・ヨト ・ヨト ・ヨ

THANK YOU FOR YOUR ATTENTION!

S.Vannuccini@sussex.ac.uk Tw: @svannuccini

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●