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1. Bridging the gap
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1. Climate time travel

Keeping everything the same..
Except climate and its impact on key macroeconomic indicators
How different will our sovereign ratings be? How much will this cost?
And, what are the policy implications of this?
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2. Machine Learning Approach

Two step modelling problem;
1. Produce a reliable, accurate model
2. Estimate it with climate-adjusted data

Sovereign rating prediction;
Linear regressions
Logit/probit models
Limitations

Solution;
Non-linear modelling;
Machine learning algorithms
Our improvements;

Ability to integrate climate economics
Parsimony
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2. Random Forests

Random forest seemed to be the most obvious modelling approach;
Some literature had implemented this before with success (over and
above other ML algorithms)
Handled non-linearities
Adaptations to the algorithm enabled us to remain as close as possible
to the actual practice of sovereign rating assessment;

Rating ranges (confidence intervals)
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2. Climate-adjusted ratings prediction

Climate economics gives us GDP for various climate scenarios
Typical classification algorithms for sovereign ratings may include up
to 15-20 factors
Problem: We needed more data to enable a robust and accurate
assessment
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2. Climate-adjusted ratings prediction

Key government performance indicators provide excellent information
for ratings prediction
We needed climate-adjusted versions
S&P assess impact of natural disasters on government balances
This enabled us to add these variables to our model
We used S&P’s assessment on what would happen to various
government balance variables as a result of GDP losses. We derived a
simple 3rd order polynominal and applied this to our GDP data.
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2. Climate-adjusted government performance indicators
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This model uses uses the government
variable as the outcome, and GDP
losses as the input. We add polynomial
terms on the right-hand side.

With the following
variables;

GDP per capita
GDP growth rate
Net General Govt
Debt/GDP
Narrow Net External
Debt/CARs
Current Account
Balance/GDP
General Government
Balance/GDP
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2. Data

Sample
108 countries
2004 - 2019
Model is calibrated on data from 2015 to improve reliability

Variables
GDP per capita
GDP growth rate
Net General Govt Debt/GDP
Narrow Net External Debt/CARs
Current Account Balance/GDP
General Government Balance/GDP
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2. Calibrating the RF algorithm

Once we established that we were able to produce climate-adjusted
versions of key variables, we set to work on building our RF model
The underlying objective is to split data
We split data by selecting the values of given variables that lead to
the best split
This is the split which results in the least mean squared error
We keep this process going until we are no longer able to split the
data with the information available or until we have a category with 5
observations.
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2. Calibrating the RF algorithm

Procedure;
We produce a regression forest, with 2,000 individual decision trees.
Each tree operates like an ordinary decision tree algorithm.
Each tree splits the data on a randomly selected subset of variables (2
are randomly selected for each split).
...and a random sample of the training dataset is assigned to each tree
with replacement (bagging)
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2. The Simulation - Pinball machine

Figure: Random forest classification
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2. Model accuracy 1

Actual Rating
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This figure shows the current
rating assigned to our
country-year observations
(x-axis) and the
out-of-sample estimated
rating from our model
(y-axis). Proximity to the
black line indicates greater
accuracy in our model.
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2. Model accuracy 2
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2. Putting it together

Predict ratings using our
model and
climate-adjusted
variables
Using three warming
scenarios

RCP 2.6
RCP 8.5
RCP 8.5 with
increasing
temperature
variability
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3. Results 1: 2030 projections

Panel A: Climate−adjusted Ratings: 2030 (RCP 8.5)

Actual Rating

E
s
ti
m

a
te

d
 R

a
ti
n
g

5 10 15 20

5
1
0

1
5

Panel B: Climate−adjusted Ratings: 2030 (RCP 2.6)
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3. Results 2: 2100 projections

Panel A: Climate−adjusted Ratings: 2100 (RCP 8.5)
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Panel B: Climate−adjusted Ratings: 2100 (RCP 2.6)
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3. Results 3: 2100 projections - RCP 8.5
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3. Results 4: 2030 projections with temperature volatility

Panel A: Climate−adjusted Ratings: 2030 (RCP 8.5)
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Panel B: Climate−adjusted Ratings: 2030 (RCP 2.6)
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3. Results 5: 2100 projections with temperature volatility

Panel A: Climate−adjusted Ratings: 2100 (RCP 8.5)
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Panel B: Climate−adjusted Ratings: 2100 (RCP 2.6)
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3. Climate-induced increases in costs of sovereign debt
(2100)

Scenario Sample Outstanding
debt

Climate-
induced
down-
grades

Additional
cost of
debt
(lower)

Additional
cost of
debt
(upper)

RCP
2.6

G7 33,617.8 0.58 14.1 21.2

Full
sample

42,716.8 0.65 22.8 34.1

RCP
8.5

G7 35,843.1 3.16 101.1 151.6

Full
sample

47326.7 2.48 136.8 205.1
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4. Summary

Primary focus is to stay as true to the climate science as possible
Paris commitments will reduce downgrades
Delaying green investment increases future cost
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