

How Important is Total Factor Productivity for Growth in CESEE

Konstantīns Beņkovskis (Bank of Latvia) Ludmila Fadejeva (Bank of Latvia) Robert Stehrer (Wiener Institut für Internationale Wirtschaftsvergleiche) Julia Wörz (Oesterreichische Nationalbank)

October 17, 2013

LATVIJAS BANKA Motivation

- This is an attempt to analyse the contributions of industry level TFP (interpreted as technological progress) to an economy's growth potential
- Improvements over traditional Solow residual approach
 - o allow for changes in utilization of inputs and non-constant returns to scale
 - evaluate TFP at industry level and aggregate via input-output framework
 - o take into account open economy characteristics
- Final use analysis allows to study the full effect of TFP on different GDP components
 - Theory postulates that TFP shocks affecting consumption have a different impact than TFP shocks affecting investment
- In addition analysis of ToT shocks, which are important for open economies

- Basu, S., Kimball, M.S. (1997) Cyclical Productivity with Unobserved Input Variation. NBER Working Paper, No. 5915, February.
- Basu, S., Fernald, J.G., Shapiro, M.D. (2001) Productivity Growth in the 1990s: Technology, Utilization, or Adjustment? NBER Working Paper, No. 8359, July.
- Basu, S., Fernald, J.G., Kimball, M.S. (2006) Are Technology Improvements Contractionary? *American Economic Review*, vol. 96, No. 5, December, pp. 1418–1448.
- Growth, C., Nunez, S., Srinivasan, S. (2006) *Productivity Growth, Adjustment Costs and Variable Factor Utilisation: the UK Case*. Bank of England Working Paper, No. 295, April.
- Fadejeva, L., Melihovs, A. (2009) *Measuring Total Factor Productivity and Variable Factor Utilisation: Sector Approach, the Case of Latvia.* Bank of Latvia Working Paper, No. 3.
- Basu, S., Fernald, J.G., Fisher, J., Kimball, M.S. (2010) Sector-Specific Technical Change. April. 62 p. Unpublished manuscript. Available: http://www.worldklems.net/conferences/worldklems2010_basu.pdf.

Solow residuals

Total factor productivity is unobserved macroeconomic variable. Therefore it should be measured by using other available data series.

The traditional approach - the Solow residual

• The Solow residual (dz) is calculated by subtracting the growth of the primary inputs (weighted by their respective shares in nominal output) from the growth of output.

$$dy = c_M dm + c_K dk + c_L dl + dz$$

The growth rate of output (dy)

- the growth rate of intermediate consumption $(c_M dm)$
- the growth rate of capital input $(c_K dk)$
- growth rate of labour input $(c_L dl)$

= total factor productivity (dz)

Where *ck*, *cl* and *cm* are the shares of capital and labour in nominal output respectively

LATVIJAS BANKA Derivation of TFP at industry level Cost minimization problem

- Follow Basu and Kimball (1997)
- Allows for non-constant returns to scale
- Cost minimization problem of a representative firm:
 - o adjustment costs for changes in capital and labour
 - o may change utilization of inputs (capital, labour)

$$\min_{S,E,H,N,I,R} E\left(\sum_{\tau=0}^{\infty} \beta^{\tau} \left(wLG(E,H)V(S) + wL\Psi(R/L) + P^{I}K\Phi(I/K) + P^{N}N\right)\right)$$
$$Y = F(KS, LHE, N, Z) = Z\left((KS)^{s_{\kappa}} (LHE)^{s_{L}} N^{s_{N}}\right)^{\gamma}$$
$$\dot{K} = (1 - \delta(S))K + I$$
$$\dot{L} = R$$

LATVIJAS BANKA Derivation of TFP at industry level

Evaluation of unobserved utilization

• Changes in output are given by:

changes in output changes in inputs changes in technology

• inputs contain capital, total hours worked and intermediate inputs

$$d\chi = s_K dk + s_L (dl + dh) + s_N dr$$

utilization

changes in change input capital

changes in capital changes in total hours worked changes in intermediate input

• unobserved changes in utilisation is a function of observables

 $du = \beta_1 dh + \beta_2 \left(dp^N + dn - dp^I - dk \right) + \beta_3 \left(di - dk \right)$

changes in utilization changes in hours per head

changes in intermediate consumption to capital

changes in investments to capital

Estimates based on LV quarterly data TFP growth getting less volatile and procyclical

TFP growth calculated from IV regression and Solow residuals, %

* Updated results from:

Fadejeva, L., Melihovs, A. (2009) *Measuring Total Factor Productivity and Variable Factor Utilization: Sector Approach, the Case of Latvia*, Bank of Latvia Working Paper 3/2009.

Estimates based on LV quarterly data TFP in manufacturing – positive growth during the crisis

Contributions to value added growth in manufacturing (% and pp)

* Updated results from:

Fadejeva, L., Melihovs, A. (2009) *Measuring Total Factor Productivity and Variable Factor Utilization: Sector Approach, the Case of Latvia*, Bank of Latvia Working Paper 3/2009.

LATVIJAS BANKA Aggregation of TFP Direct and indirect effects

- Industry specific TFP growth represent direct effects of technological change on the economy
 - However, technological changes in one industry is multiplied through interlinkages among sectors
 - Depending on strength and type of interlinkages (i.e. structure of intermediate use) aggregate TFP is affected differently by technology shocks in different industries
- Final use analysis allows to study the full effect of industry TFP growth on different GDP components
 - Theory postulates that TFP shocks affecting consumption have a different impact than TFP shocks affecting investment
- In addition analysis of ToT shocks, which are important for open economies

LATVIJAS BANKA Aggregation of TFP Stylized Input-Output table for closed economy

		Product 1	Product 2	Consumption	Total input
Domestic	Product 1	$P_1 N_{11}$	$P_1 N_{12}$	P_1C_1	P_1Y_1
	Product 2	$P_2 N_{21}$	$P_2 N_{22}$	P_2C_2	P_2Y_2
Value added	1	VA ₁	VA ₂	•••	VA
Total output		P_1Y_1	P_2Y_2	$P^{C}C$	

 P_i is the price of a product i

 P^C is the price of a consumption basket

 N_{ji} is the intermediate input of product j used in the production of i

 \dot{VA}_i is the value added of product *i*

 Y_i is the gross output of product *i*

 C_i is the consumption of product i

C is total consumption

LATVIJAS BANKA Aggregation of TFP Stylized Input-Output table for closed economy

		Product 1	Product 2	Consumption	Total input		
Domestic	Product 1	$P_1 N_{11}$	$P_{1}N_{12}$	P_1C_1	P_1Y_1		
	Product 2	$P_2 N_{21}$	$P_2 N_{22}$	P_2C_2	P_2Y_2		
Value added	1	$/ VA_1$	VA ₂	\	VA		
Total output	t /	P_1Y_1	P_2Y_2	P ^C C			
					I		
Matri	ix B		Matrix S _C				
Represents shares of intermediate inputs in total output				Represents structure of final consumption			

LATVIJAS BANKA Aggregation of TFP Derivation of aggregated contribution

• Some mathematical transformations:

$$dy_{i} = \gamma_{i}^{*} \left(s_{Ki} dk_{i} + s_{Li} \left(dl_{i} + dh_{i} \right) + \sum_{j} s_{Nji} dn_{ji} \right) + \gamma_{i}^{*} du_{i} + dz_{i}$$

$$dc_{i} = \gamma_{i}^{*} \left(s_{Ki} dk_{i} + s_{Li} \left(dl_{i} + dh_{i} \right) + \sum_{j} s_{Nji} dc_{j} \right) + \gamma_{i}^{*} du_{i} + dz_{i}$$

$$dc = \gamma s_{K} dk + \gamma s_{L} \left(dl + dh \right) + \gamma B^{T} dc + \gamma du + dz$$

$$dc = \left(\mathbf{I} - \gamma B^{T} \right)^{-1} \gamma s_{K} dk + \left(\mathbf{I} - \gamma B^{T} \right)^{-1} \gamma s_{L} \left(dl + dh \right) + \left(\mathbf{I} - \gamma B^{T} \right)^{-1} \gamma du + \left(\mathbf{I} - \gamma B^{T} \right)^{-1} dz$$

• Aggregated TFP contribution to final use growth

(consumtion goods, investment goods, trade goods): $dz_C = s_C \left(\mathbf{I} - \gamma B^T\right)^{-1} dz$

LATVIJAS BANKA Aggregation of TFP

From closed economy to open economy

- The input-output framework above has a very restrictive assumption of a closed economy
 - We need to modify the stylized input-output table by including export and import flows
- A "virtual" trade product is added to Input-Output table
 - The process of international trade can be viewed as a synthetic industry: in order to obtain imported goods, a country is forced to involve into export activities.
 - Using production function terminology, exports are the inputs of "virtual" trade industry and imports are the output.
 - ToT can be viewed as a TFP!

a. Positive TFP shock

b. Improvement in ToT

LATVIJAS BANKA Aggregation of TFP Stylized Input-Output table for open economy

	Product 1	Product 2	Trade product	Consumption	Total input	
Domestic Product 1	$P_1 N_{11}$	$P_1 N_{12}$	P_1X_1	P_1C_1	P_1Y_1	
Product 2	$P_2 N_{21}$	$P_2 N_{22}$	P_2X_2	P_2C_2	P_2Y_2	
Trade product	$P^{M}{}_{1}M_{1}$	$P^{M}_{2}M_{2}$		$P^{M}{}_{C}C^{M}$	$P^M M$	
Value added	$/ VA_1$	VA ₂			VA	
Financial account	/	•••	$P^M M - P^X X$			
Total output	P_1Y_1	P_2Y_2	$P^M M$	$P^{C}C$		
Matrix B	Matrix S _C					
Represents shares of intermediate inputs in total output			Represents structure of final consumption			

LATVIJAS BANKA Description of the database WIOD – World Input-Output Database

- Harmonized input-output tables (WIOD)
- Industry level data on output, capital, labour ${\bullet}$
- 35 industries (NACE, rev.1)
- 40 countries:
 - o 27 EU members
 - o 13 major countries
- Annual data for 1995-2009

Estimation of TFP at industry level Estimation strategy

• Regression to estimate:

 $dy_{it} = b_0 + \gamma^* d\chi_{it} + b_1 dh_{it} + b_2 (dp_{it}^N + dn_{it} - dp_{it}^I - dk_{it}) + b_3 (di_{it} - dk_{it}) + \xi_{it}$ $dz_{it} = b_0 + \xi_{it}$

- o Data organized in industry-specific panel datasets
- o Country-specific fixed effects
- o Estimated by TSLS
 - Instruments: external demand, interest rates, real exchange rate, budget balance, world commodity prices

Estimation of TFP at industry level Estimation results

	Coefficients				No of	Sangan taat	
Industry	dy	dh	dn+dp ^N - di-dk	countries	obs	(n-value)	
	u _L	un	_dk_dp ^I	uruk	countries	003.	(p value)
Agriculture, Forestry and Fishing	0.032	-0.029	0.928***	0.018	40	360	0.620
Mining and Quarrying	0.548***	0.171	0.121	-0.019	40	393	0.684
Food, Beverages and Tobacco	1.076***	0.155	-0.049	0.012	40	407	0.017
Textiles and Textile Products	0.909***	0.052	0.122	-0.004	40	398	0.254
Leather and Footwear	0.940***	0.040	0.180*	0.021	39	350	0.463
Wood and Products of Wood and Cork	0.975***	0.296	0.199	-0.034	40	394	0.669
Pulp, Paper, Printing and Publishing	1.001***	0.103	0.031	0.003	40	407	0.080
Refined Petroleum, Chemical Products	0.998***	0.007	-0.082	0.012	40	404	0.019
Rubber and Plastics	0.936***	0.112***	0.120*	-0.007	40	407	0.705
Other Non-Metallic Mineral	0.997***	0.398	0.087	-0.018	40	404	0.226
Basic Metals and Fabricated Metal	0.841***	0.275	0.132	-0.009	40	407	0.327
Machinery, n.e.c.	0.852***	0.447**	0.230	-0.051**	40	407	0.112
Electrical and Optical Equipment	1.159***	0.099	-0.113	-0.009	40	401	0.685
Transport Equipment	0.497***	-0.073	0.734***	-0.069	40	399	0.599
Manufacturing, n.e.c; Recycling	0.924***	0.281	0.147	-0.034	40	396	0.479
Electricity, Gas and Water Supply	0.572***	-0.036	0.305**	0.011	40	403	0.134
Construction	0.942***	0.132	0.163*	-0.030	40	404	0.983
Trade	0.745***	0.110	0.360**	0.005	40	407	0.169
Hotels and Restaurants	0.919***	0.038	0.419	-0.026	40	394	0.508
Transport	0.909***	0.189	0.155*	0.004	40	402	0.494
Post and Telecommunications	1.168***	0.075	-0.028	-0.015	40	404	0.392
Financial Intermediation	1.131***	0.174	-0.154	-0.015	40	401	0.504
Real Estate Activities	1.103***	0.015	-0.083	-0.012	40	407	0.925
Other Business Activities	1.177***	0.527**	-0.180	0.006	40	405	0.562
Public Administration and Defence	0.773***	0.137	0.088	0.006	39	392	0.463
Education	-0.684	-0.065	0.502	0.055	40	401	0.908
Health and Social Work	0.021	0.439	0.160	-0.084*	40	394	0.649
Other Social Services; Employed Persons	1.377*	-0.827	0.073	-0.088	40	401	0.346

Estimated TFP are less correlated with changes in output

Inductry	Solow residual	TFP adjusted for
	Solow residual	varying utilization
Agriculture, Forestry and Fishing	0.100	0.137
Mining and Quarrying	0.206	0.754
Food, Beverages and Tobacco	0.149	0.039
Textiles and Textile Products	0.110	-0.003
Leather and Footwear	0.284	-0.147
Wood and Products of Wood and Cork	0.375	-0.121
Pulp, Paper, Printing and Publishing	0.134	0.009
Refined Petroleum, Chemical Products	0.058	0.259
Rubber and Plastics	0.247	0.056
Other Non-Metallic Mineral	0.362	0.004
Basic Metals and Fabricated Metal	0.076	0.089
Machinery, n.e.c.	0.315	0.070
Electrical and Optical Equipment	0.248	0.064
Transport Equipment	-0.094	-0.302
Manufacturing, n.e.c; Recycling	0.282	0.134
Electricity, Gas and Water Supply	0.271	0.281
Construction	0.289	0.065
Trade	0.270	-0.007
Hotels and Restaurants	0.280	-0.166
Transport	0.306	0.035
Post and Telecommunications	0.386	0.077
Financial Intermediation	0.300	0.333
Real Estate Activities	-0.048	0.037
Other Business Activities	0.211	0.253
Public Administration and Defence	0.001	0.119
Education	0.325	0.501
Health and Social Work	0.311	0.793
Other Social Services; Employed Persons	0.417	-0.061
Overall	0.176	0.085

LATVIJAS BANKA Aggregated TFP Contributions to value added growth

LATVIJAS BANKA Aggregated TFP Contributions to value added growth Latvia, 1996-2009 10,0 8,0 6,0 Other services Transport 4,0 Trade 2,0 Other goods Construction 0,0 Manufacturing ←Total TFP -2,0 -4,0

1996 1997 1998 1999 1999 1999 2001 2003 2005 2005 2005 2005 2006 2008 2009

LATVIJAS BANKA Aggregated TFP Contributions to different final use components

LATVIJAS BANKA Aggregated TFP Contributions to consumption growth

LATVIJAS BANKA Aggregated TFP Contributions to investment growth

LATVIJAS BANKA Aggregated TFP Contributions to exports growth

LATVIJAS BANKA Conclusions

- Large differences in TFP growth in the region:
 - Might be driven by technological convergence
 - Some important differences in sectoral composition as well
- Highest TFP growth observed for exports and investment products
 - Despite high degree of openness, ToT do not play a significant role in growth of final demand
- Accounting for changes in utilisation leads to more stable estimated TFP growth
 - o However, annual frequency of data in WIOD is an obstacle