

The Vienna Institute for International Economic Studies

Seminar in International Economics **16 April 2015**

Macroeconomic Stability and the Single European Labor Market

Timo Baas (with Marjan Aikimbaeva) University of Duisburg-Essen

This seminar series is an activity in the framework of FIW ('Forschungsschwerpunkt Internationale Wirtschaft'), which is a project designed to build a center of excellence in research on International Economics, funded by the Austrian Ministry of Science, Research and Economy (BMWFW).

Macroeconomic Stability and the Single European Labor Market

Marjan Aikimbaeva¹ Timo Baas²

^{1,2}Department of Business Administration and Economics University of Duisburg-Essen

FIW-Seminar in International Economics, 16.4.2015

▶ ∢ ≣ ▶

Outline

1 Motivation

- Macroeconomic Shocks and the Common Labor Market
- Previous Work

2 The model

- Data
- Impulse Response Functions
- Historical Decomposition

Shocks and the Labor Market

Outline

1 Motivation

Macroeconomic Shocks and the Common Labor Market

• Previous Work

- Data
- Impulse Response Functions
- Historical Decomposition

Shocks and the Labor Market Previous Work

Labor Mobility

- Increased substantially after 2004
 - 3.2 (1.7) per cent of EU-citizens are mobile
 - 0.2 per cent are on the move every year
 - Dao et al. (2013)
 - 10 sacked workers: 1 unemployed, 6 inactive, 3 migrating
- Is significantly lower than in the US
 - 2 per cent of US-Americans on the move every year
 - Dao et al. (2013)
 - 10 sacked workers: 2 unemployed, 2 inactive, 6 migrating

• □ ▶ • • □ ▶ • • □ ▶ •

Shocks and the Labor Market Previous Work

Labor Mobility

- Increased substantially after 2004
 - 3.2 (1.7) per cent of EU-citizens are mobile
 - 0.2 per cent are on the move every year
 - Dao et al. (2013)
 - 10 sacked workers: 1 unemployed, 6 inactive, 3 migrating
- Is significantly lower than in the US
 - 2 per cent of US-Americans on the move every year
 - Dao et al. (2013)
 - 10 sacked workers: 2 unemployed, 2 inactive, 6 migrating

< □ > < 同 > < 三 > .

Shocks and the Labor Market Previous Work

Labor Mobility

- Increased substantially after 2004
 - 3.2 (1.7) per cent of EU-citizens are mobile
 - 0.2 per cent are on the move every year
 - Dao et al. (2013)
 - 10 sacked workers: 1 unemployed, 6 inactive, 3 migrating
- Is significantly lower than in the US
 - 2 per cent of US-Americans on the move every year
 - Dao et al. (2013)
 - 10 sacked workers: 2 unemployed, 2 inactive, 6 migrating

< □ > < 同 > < 三 > .

Shocks and the Labor Market Previous Work

Lack of Mobility

Language

- 24 official languages
- 5 semi-official languages
- 7 main minority languages

• Culture

- Historical Divisions
- Law
- Regions
- Caveats
 - Welfare systems
 - Education / Training

< A

Shocks and the Labor Market Previous Work

Lack of Mobility

Language

- 24 official languages
- 5 semi-official languages
- 7 main minority languages
- Culture
 - Historical Divisions
 - Law
 - Regions
- Caveats
 - Welfare systems
 - Education / Training

Shocks and the Labor Market Previous Work

Lack of Mobility

Language

- 24 official languages
- 5 semi-official languages
- 7 main minority languages
- Culture
 - Historical Divisions
 - Law
 - Regions
- Caveats
 - Welfare systems
 - Education / Training

Shocks and the Labor Market Previous Work

A Common Market

• 1957

- Accept job-offers
- Move freely

• 1999

- EU-citizenship
- Freedom of movement
- Non-discrimination
- Today's issues
 - Differences in social security systems
 - Taxation
 - Recognition of qualification

▲ □ ▶ ● ● ● ●

Shocks and the Labor Market Previous Work

A Common Market

• 1957

- Accept job-offers
- Move freely

• 1999

- EU-citizenship
- Freedom of movement
- Non-discrimination

• Today's issues

- Differences in social security systems
- Taxation
- Recognition of qualification

▲ 同 ▶ → ▲ 三

Shocks and the Labor Market Previous Work

A Common Market

• 1957

- Accept job-offers
- Move freely

• 1999

- EU-citizenship
- Freedom of movement
- Non-discrimination
- Today's issues
 - Differences in social security systems
 - Taxation
 - Recognition of qualification

Shocks and the Labor Market Previous Work

More Heterogeneous Union

- 2004 Accession
 - Wages one third of EU-average
 - High youth unemployment
- 2007 Accession
 - Wages one fifth of EU-average
 - Minorities

Shocks and the Labor Market Previous Work

Maroeconomic shocks

• Decision to move depends on economic conditions

- A two-step migration approach
- Migration as a shock absorber

Shocks and the Labor Market Previous Work

Maroeconomic shocks

- Decision to move depends on economic conditions
- A two-step migration approach
- Migration as a shock absorber

Shocks and the Labor Market Previous Work

Maroeconomic shocks

- Decision to move depends on economic conditions
- A two-step migration approach
- Migration as a shock absorber

Motivation

The model Results Summarv Shocks and the Labor Market Previous Work

Outline

1 Motivation

- Macroeconomic Shocks and the Common Labor Market
- Previous Work

- Data
- Impulse Response Functions
- Historical Decomposition

Shocks and the Labor Market Previous Work

Business Cycles and Migration

• Jerome (1926)

- Cycle properties of European migration to the US
- 19th and early 20th century
- Easterlin (1966), Kelley (1965), Gallaway et al. (1971)
 - Confirm the business cycle impact on migration
 - Destination country drives migration
- Borjas (2001)
 - Fixed migration costs
 - Regions are close substitutes
 - Two stage decision process

▲ 同 ▶ ▲ 国 ▶

Shocks and the Labor Market Previous Work

Business Cycles and Migration

- Jerome (1926)
 - Cycle properties of European migration to the US
 - 19th and early 20th century
- Easterlin (1966), Kelley (1965), Gallaway et al. (1971)
 - Confirm the business cycle impact on migration
 - Destination country drives migration
- Borjas (2001)
 - Fixed migration costs
 - Regions are close substitutes
 - Two stage decision process

< 同 ト < 三 ト

Shocks and the Labor Market Previous Work

Business Cycles and Migration

- Jerome (1926)
 - Cycle properties of European migration to the US
 - 19th and early 20th century
- Easterlin (1966), Kelley (1965), Gallaway et al. (1971)
 - Confirm the business cycle impact on migration
 - Destination country drives migration
- Borjas (2001)
 - Fixed migration costs
 - Regions are close substitutes
 - Two stage decision process

Motivation

he model Results Summary Shocks and the Labor Market Previous Work

Recent studies

• Barrett (2010)

- Migrants are more respondent to shocks
- Increase labor market flexibility
- Bertoli et al. (2013)
 - "Diversion" from Southern-Europe to Germany
 - Destination country drives migration
- Mandelman et al. (2014)
 - Migrants reduce business-cycle impact on natives
 - Border control increases the volatility of wages and unemployment

Shocks and the Labor Market Previous Work

Recent studies

- Barrett (2010)
 - Migrants are more respondent to shocks
 - Increase labor market flexibility
- Bertoli et al. (2013)
 - "Diversion" from Southern-Europe to Germany
 - Destination country drives migration
- Mandelman et al. (2014)
 - Migrants reduce business-cycle impact on natives
 - Border control increases the volatility of wages and unemployment

Shocks and the Labor Market Previous Work

Recent studies

- Barrett (2010)
 - Migrants are more respondent to shocks
 - Increase labor market flexibility
- Bertoli et al. (2013)
 - "Diversion" from Southern-Europe to Germany
 - Destination country drives migration
- Mandelman et al. (2014)
 - Migrants reduce business-cycle impact on natives
 - Border control increases the volatility of wages and unemployment

Shocks and the Labor Market Previous Work

Our contribution

• Two county, two sector DSGE model

- Endogenous migration decision
- Sticky prices (Calvo-type)
- Migrant and native labor imperfect substitutable
- Bayesian estimation
 - Time-series of bilateral movement Poland-Germany
 - Mixed frequency approach
 - Estimate model parameters
- Address the response to macroeconomic shocks
 - Impact of technology, labor supply, preference and exchange rate shocks
 - Importance of shocks in home and foreign for migration

Shocks and the Labor Market Previous Work

Our contribution

- Two county, two sector DSGE model
 - Endogenous migration decision
 - Sticky prices (Calvo-type)
 - Migrant and native labor imperfect substitutable
- Bayesian estimation
 - Time-series of bilateral movement Poland-Germany
 - Mixed frequency approach
 - Estimate model parameters
- Address the response to macroeconomic shocks
 - Impact of technology, labor supply, preference and exchange rate shocks
 - Importance of shocks in home and foreign for migration

Image: A matrix A

Shocks and the Labor Market Previous Work

Our contribution

- Two county, two sector DSGE model
 - Endogenous migration decision
 - Sticky prices (Calvo-type)
 - Migrant and native labor imperfect substitutable
- Bayesian estimation
 - Time-series of bilateral movement Poland-Germany
 - Mixed frequency approach
 - Estimate model parameters
- Address the response to macroeconomic shocks
 - Impact of technology, labor supply, preference and exchange rate shocks
 - Importance of shocks in home and foreign for migration

Households

• Utility

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta_t \kappa_t \left\{ \ln \left[(1-\alpha)^{\frac{1}{\eta}} c_{d,t}^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} c_{f,t}^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}} + \psi \omega_t \ln(1-l_t) \right\}$$

Varieties

$$c_{d,t} = \left(\int_0^1 d_{d,t}(i)^{\frac{\varepsilon-1}{\varepsilon}} di\right)^{\frac{\varepsilon}{\varepsilon-1}}; c_{f,t} = \left(\int_0^1 c_{f,t}(i)^{\frac{\varepsilon-1}{\varepsilon}} di\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

• Budget constraint

$$\int_{0}^{1} \left[p_{d,t}(i)c_{d,t}(i) + p_{f,t}(i)c_{f,t}(i) \right] di + k_{d,t+1} = w_{t}l_{d,t} + r_{d,t}k_{d,t} + (1-\delta)k_{d,t}$$

◆□ > ◆□ > ◆豆 > ◆豆 >

æ

Households

• Utility

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta_t \kappa_t \left\{ \ln \left[(1-\alpha)^{\frac{1}{\eta}} c_{d,t}^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} c_{f,t}^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}} + \psi \omega_t \ln(1-l_t) \right\}$$

Varieties

$$c_{d,t} = \left(\int_0^1 d_{d,t}(i)^{\frac{\varepsilon-1}{\varepsilon}} di\right)^{\frac{\varepsilon}{\varepsilon-1}}; c_{f,t} = \left(\int_0^1 c_{f,t}(i)^{\frac{\varepsilon-1}{\varepsilon}} di\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

Budget constraint

 $\int_0^1 \left[p_{d,t}(i)c_{d,t}(i) + p_{f,t}(i)c_{f,t}(i) \right] di + k_{d,t+1} = w_t l_{d,t} + r_{d,t} k_{d,t} + (1-\delta)k_{d,t}$

・ 同 ト ・ 三 ト ・

Households

• Utility

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta_t \kappa_t \left\{ \ln \left[(1-\alpha)^{\frac{1}{\eta}} c_{d,t}^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} c_{f,t}^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}} + \psi \omega_t \ln(1-l_t) \right\}$$

Varieties

$$c_{d,t} = \left(\int_0^1 d_{d,t}(i)^{\frac{\varepsilon-1}{\varepsilon}} di\right)^{\frac{\varepsilon}{\varepsilon-1}}; c_{f,t} = \left(\int_0^1 c_{f,t}(i)^{\frac{\varepsilon-1}{\varepsilon}} di\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

• Budget constraint

$$\int_0^1 \left[p_{d,t}(i)c_{d,t}(i) + p_{f,t}(i)c_{f,t}(i) \right] di + k_{d,t+1} = w_t l_{d,t} + r_{d,t} k_{d,t} + (1-\delta)k_{d,t}$$

□→ < □→</p>

æ

Firms

Production

$$y_t = \left[lpha k_t^{\phi} + (1-lpha) L_t^{\phi}
ight]^{rac{1}{\phi}},$$

Labor

$$L_t = \left\{ \gamma l_{d,t}^{\theta} + (1 - \gamma) l_{f,t}^{\theta} \right\}^{1/\theta}$$

• Labor demand

$$\frac{l_t^*}{l_t} = \left(\frac{w_t}{e_t w_t^*}\right)^{\theta} \left(\frac{1-\gamma}{\gamma}\right)^{\theta}.$$

æ

Firms

Production

$$y_t = \left[lpha k_t^{\phi} + (1-lpha) L_t^{\phi}
ight]^{rac{1}{\phi}},$$

Labor

$$L_t = \left\{ \gamma l_{d,t}^{\theta} + (1-\gamma) l_{f,t}^{\theta} \right\}^{1/\theta}$$

• Labor demand

$$\frac{l_t^*}{l_t} = \left(\frac{w_t}{e_t w_t^*}\right)^{\theta} \left(\frac{1-\gamma}{\gamma}\right)^{\theta}.$$

▲ 同 ▶ | ▲ 国 ▶

문 문 문

Firms

Production

$$y_t = \left[lpha k_t^{\phi} + (1-lpha) L_t^{\phi}
ight]^{rac{1}{\phi}},$$

Labor

$$L_t = \left\{ \gamma l_{d,t}^{\theta} + (1-\gamma) l_{f,t}^{\theta} \right\}^{1/\theta}$$

• Labor demand

$$\frac{l_t^*}{l_t} = \left(\frac{w_t}{e_t w_t^*}\right)^{\theta} \left(\frac{1-\gamma}{\gamma}\right)^{\theta}$$

æ

< /i>

Calvo

• Price setting

$$P_t^*(i) = \frac{\varsigma}{(\varsigma-1)} \frac{\sum_{j=0}^{\infty} (\nu\beta)^j E_t(\lambda_{t+j} P_{t+j}^{\varsigma} Y_{t+j} \varepsilon_{t+j})}{\sum_{j=0}^{\infty} (\nu\beta)^j E_t(\lambda_{t+j} P_{t+j}^{\varsigma-1} Y_{t+j})}.$$

• Philips curve

$$\pi_t = \beta E_t \pi_{t+1} + \frac{(1-\nu)(1-\nu\beta)}{\nu} \hat{\varepsilon}_t,$$

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

문 문 문

• Price setting

$$P_t^*(i) = \frac{\varsigma}{(\varsigma-1)} \frac{\sum_{j=0}^{\infty} (\nu\beta)^j E_t(\lambda_{t+j} P_{t+j}^{\varsigma} Y_{t+j} \varepsilon_{t+j})}{\sum_{j=0}^{\infty} (\nu\beta)^j E_t(\lambda_{t+j} P_{t+j}^{\varsigma-1} Y_{t+j})}.$$

• Philips curve

$$\pi_t = eta E_t \pi_{t+1} + rac{(1-v)(1-veta)}{v} \hat{arepsilon}_t,$$

< 一型

→ ∢ ≣ →

æ

э

• Price setting

$$P_t^*(i) = \frac{\varsigma}{(\varsigma-1)} \frac{\sum_{j=0}^{\infty} (\nu\beta)^j E_t(\lambda_{t+j} P_{t+j}^{\varsigma} Y_{t+j} \varepsilon_{t+j})}{\sum_{j=0}^{\infty} (\nu\beta)^j E_t(\lambda_{t+j} P_{t+j}^{\varsigma-1} Y_{t+j})}.$$

• Philips curve

$$\pi_t = eta E_t \pi_{t+1} + rac{(1-v)(1-veta)}{v} \hat{arepsilon}_t,$$

< 一型

→ ∢ ≣ →

æ

э

Risk Sharing, Monetary policy, Shocks

Risk sharing

$$\beta\left(\frac{E_t\left\{c_{t+1}^*\right\}}{c_t^*}\right)^{-\sigma}\left(\frac{\pi_t^*e_t^{-1}}{E_t\left\{\pi_{t+1}^*e_{t+1}^{-1}\right\}}\right) = E_t\left\{q_{t,t+1}\right\}$$

Monetary policy

 $\ln (R_t/R) = \rho_r \ln (R_{t-1}/R) + \rho_y \ln (Y_t/Y) + \rho_\pi \ln (\pi_t/\pi) + \varepsilon_{r_t},$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Risk Sharing, Monetary policy, Shocks

• Risk sharing

$$\beta\left(\frac{E_t\left\{c_{t+1}^*\right\}}{c_t^*}\right)^{-\sigma}\left(\frac{\pi_t^*e_t^{-1}}{E_t\left\{\pi_{t+1}^*e_{t+1}^{-1}\right\}}\right) = E_t\left\{q_{t,t+1}\right\}$$

Monetary policy

$$\ln \left(R_t/R \right) = \rho_r \ln \left(R_{t-1}/R \right) + \rho_y \ln \left(Y_t/Y \right) + \rho_\pi \ln \left(\pi_t/\pi \right) + \varepsilon_{r_t},$$

Risk Sharing, Monetary policy, Shocks

• Risk sharing

$$\beta\left(\frac{E_t\left\{c_{t+1}^*\right\}}{c_t^*}\right)^{-\sigma}\left(\frac{\pi_t^*e_t^{-1}}{E_t\left\{\pi_{t+1}^*e_{t+1}^{-1}\right\}}\right) = E_t\left\{q_{t,t+1}\right\}$$

Monetary policy

$$\ln \left(R_t/R \right) = \rho_r \ln \left(R_{t-1}/R \right) + \rho_y \ln \left(Y_t/Y \right) + \rho_\pi \ln \left(\pi_t/\pi \right) + \varepsilon_{r_t},$$

Shocks

• Labor supply

$$\omega_t =
ho_\omega \omega_{t-1} + arepsilon_{\omega,t} \ , arepsilon_{\omega,t} \sim N(0,1)$$

• Preference

$$\kappa_t =
ho_\kappa \kappa_{t-1} + \varepsilon_{\kappa,t} \ , \varepsilon_{\kappa,t} \sim N(0,1)$$

Technology

$$z_t = \rho_z z_{t-1} + \varepsilon_{z,t}$$
, $\varepsilon_{z,t} \sim N(0,1)$

• Exchange rate

$$\psi_t =
ho_\psi \psi_{t-1} + arepsilon_{\psi,t}$$
 , $arepsilon_{\psi,t} \sim \mathcal{N}(0,1)$ (0.1)

Data Impulse Response Functions Historical Decomposition

Outline

- Macroeconomic Shocks and the Common Labor Market
- Previous Work
- 2 The model

• Data

- Impulse Response Functions
- Historical Decomposition

< A

Data Impulse Response Functions Historical Decomposition

Data Sources

• German Statistical Office (DESTAT)

- Bilateral migration flows (monthly)
- Federal Employment Agency
 - Employment (monthly)
- OECD
 - GDP (quarterly)
 - Private Consumption (quarterly)
 - Exchange rate (monthly)
 - Employed population Poland (quarterly)

< /i>

Data Impulse Response Functions Historical Decomposition

Data Sources

- German Statistical Office (DESTAT)
 - Bilateral migration flows (monthly)
- Federal Employment Agency
 - Employment (monthly)
- OECD
 - GDP (quarterly)
 - Private Consumption (quarterly)
 - Exchange rate (monthly)
 - Employed population Poland (quarterly)

▲ 同 ▶ ▲ 国 ▶

Data Impulse Response Functions Historical Decomposition

Data Sources

- German Statistical Office (DESTAT)
 - Bilateral migration flows (monthly)
- Federal Employment Agency
 - Employment (monthly)
- OECD
 - GDP (quarterly)
 - Private Consumption (quarterly)
 - Exchange rate (monthly)
 - Employed population Poland (quarterly)

Data Impulse Response Functions Historical Decomposition

Prior Distribution

Description		Prior Distributions			Posterior Distributions		
*	Parameter	Density	Mean	Std.Dev.	Mean	Std.Dev.	
Elasticity of Substitution	σ	Inv. Gamma	2.86	0.633	10.301	0.6330	
Share of Foreign Labor	γ	Normal	0.0263	0.01	0.26	0.01	
Tech.Shock (D)	ρ_z	Beta	0.75	0.10	0.9089	0.1	
Preference Shock (D)	ρ_{κ}	Beta	0.75	0.10	0.9354	0.1	
Labor Supply Shock(F)	$ ho_{\mu}$	Beta	0.75	0.10	0.8985	0.1	
Tech.Shock (F)	ρ_m	Beta	0.75	0.10	0.9405	0.1	
Preference Shock (F)	ρ_{λ}	Beta	0.75	0.10	0.8074	0.1	
Tech.Shock (D)	ϵ_z	Inv.Gamma	0.1	2	2.2725	2	
Preference Shock (F)	ϵ_{κ}	Inv.Gamma	0.1	2	4.70	2	
Labor Supply Shock(F)	ϵ_{μ}	Inv.Gamma	0.1	2	7.37	2	
Tech.Shock (F)	ϵ_m	Inv.Gamma	0.1	2	11.93	2	
Preference Shock (F)	ϵ_{λ}	Inv.Gamma	0.1	2	2.281	2	
Calvo parameter (D)	η_f	Beta	0.75	0.10	0.7303	0.0112	
Elast.of Subst.goods (F)	η_f	Gamma	2	0.75	2.64	0.05	
Taylor rule output (D)	ρ_y	Normal	0.125	0.05	0.1093	0.0068	
Taylor rule inflation(D)	ρ_{π}	Normal	1.5	0.125	1.41	0.0159	
Taylor rule int.rate(D)	ρ_r	Beta	0.75	0.10	0.78	0.0191	
Taylor rule output (F)	ρ_{yf}	Normal	0.125	0.05	0.1183	0.0155	
Taylor rule inflation (F)	ρ_{π_f}	Normal	1.5	0.125	1.517	0.0335	
Taylor rule int.rate (F)	ρ_{rf}	Beta	0.32	0.10	0.2792	0.0204	

Table 1: Prior and Posterior Distributions

Author, Another Single European Labor Market

🖹 ୬ବ୍ତ

Data Impulse Response Functions Historical Decomposition

Variance Decomposition

Obs. Variable	\mathcal{E}_{Z}	ε_m	ε_{ω}	ε _d	\mathcal{E}_{df}	<i>E</i> _{exr}	
Output (D)	8.70	2.84	0.73	72.83	13.95	0.95	
Output (F)	0.15	41.53	0.03	3.26	44.77	10.26	
Composite Labor (D)	1.98	1.24	4.45	87.15	4.55	0.62	
lmmigrants (D)	0.22	14.38	0.01	2.46	77.52	5.40	

Variance decomposition for period 100

э

Impulse Response Functions Historical Decomposition

Outline

- Macroeconomic Shocks and the Common Labor Market
- Previous Work

Results

- Data
- Impulse Response Functions
- Historical Decomposition

Data Impulse Response Functions Historical Decomposition

Impulse Response Functions

- Technology shocks in home and foreign affect migration
- Weak impact of exchange rate shocks
- Weak and ambiguous impact of preference shocks in the destination

Data Impulse Response Functions Historical Decomposition

Technology Shock Home

Impulse response functions to a positive technology shock in the domestic country with 5 to 95 per cent confidence intervals. Notes: Each panel shows the response of the model variables to a technology shock of one. The horizontal axes measure time, expressed in months.

Data Impulse Response Functions Historical Decomposition

Technology Shock Foreign

Impulse response functions to a positive technology shock in the foreign country with 5 to 95 per cent confidence intervals. Notes: Each panel shows the response of the model variables to a technology shock of one. The horizontal axes measure time, expressed in months.

Data Impulse Response Functions Historical Decomposition

Preference Shock Home

Impulse response functions to a positive domestic preference shock in the domestic country with 5 to 95 per cent confidence intervals. Notes: Each panel shows the response of the model variables to a technology shock of one. The horizontal axes measure time, expressed in months.

▲ 同 ▶ → 国 ▶

Data Impulse Response Functions Historical Decomposition

Exchange Rate Shock

Impulse response functions to a positive exchange-rate shock with 5 to 95 per cent confidence intervals.

Notes: Each panel shows the response of the model variables to a technology shock of one. The horizontal axes measure time, expressed in months.

Data Impulse Response Functions Historical Decomposition

Labor Supply Shock

Impulse response functions to a positive labor supply shock in the domestic country with 5 to 95 per cent confidence intervals.

Notes: Each panel shows the response of the model variables to a technology shock of one. The horizontal axes measure time, expressed in months.

< ロ > < 同 > < 回 > < 回 >

Data Impulse Response Functions Historical Decomposition

Outline

- Macroeconomic Shocks and the Common Labor Market
- Previous Work
- 2 The model

Results

- Data
- Impulse Response Functions
- Historical Decomposition

Data Impulse Response Functions Historical Decomposition

Historical Decomposition

- Shocks can explain deviations in output for Germany and Poland
- Migration flows are predominantly determined by home country shocks
- Preference shocks and technology shocks outpace exchange rate shocks

Data Impulse Response Functions Historical Decomposition

Output Germany

Historical decomposition of output for Germany in the sample period 1/2006 to 12/2014.

< ロ > < 同 > < 回 > <

Data Impulse Response Functions Historical Decomposition

Output Poland

Historical decomposition of output for Poland in the sample period 1/2006 to 12/2014.

< ロ > < 同 > < 回 > <

Data Impulse Response Functions Historical Decomposition

Migration flows

Historical decomposition of the immigration time-series for Germany in the sample period 1/2006 to 12/2014.

< ロ > < 同 > < 回 > <

Summary

- Migration flows are affected by the business cycle
- Shocks of the home country are more important than those of the destination
 - Preference and technology shocks
- This holds also true for other country pairs (UK Poland)