Disentangling the Impact of Infrastructure on Trade Using a New Index of Infrastructure

Birgit Mever*

joint work with Julian Donaubauer, Alexander Glas and Peter Nunnenkamp

* Vienna University of Economics and Business

Motivation and Literature

- "In the trade literature, the role of infrastructure remains largely unexplored" Bougheas et al. (1999 JIE)
- Recent literature:
 - → More and better infrastructure reduces trade-related transaction costs (e.g., Limão and Venables, 2001 WBER; Vijil and Wagner, 2012; Portugal-Perez and Wilson, 2012 WD; Francois and Manchin, 2013 WD)
 - ⇒ Positive effects of infrastructure on international trade relations

Motivation and Literature

- Literature on the role of infrastructure for international trade is still subject to several limitations.
- lack of understanding how and to which extend infrastructure actually reduce the cost of trading and how the resulting trade cost reductions affect welfare
- ⇒ Railroads of the Raj: railroads decrease trade costs and interregional price gaps, increased interregional and international trade, increased real income levels (Donaldson, forthcoming AER)
 - We assess the relation between infrastructure and international trade by using a measure for quantity and quality of infrastructure and try to disentangle the channels through which infrastructure impacts trade

Gravity and Infrastructure

• structural gravity framework (Anderson and Van Wincoop, 2003):

$$X_{ij} = \frac{Y_i E_j}{Y^W} \left(\frac{t_{ij}}{\Pi_i P_j} \right)^{1-\sigma} \tag{1}$$

where X_{ii} exports from i to j

 Y_i exporter is production of traded goods

 E_j importer j's expenditures for consumption

 t_{ij} iceberg-type transport cost

 Π_i and P_j outward and inward multilateral resistance terms

$$\Pi_i^{1-\sigma} = \sum_i \left(\frac{t_{ij}}{P_j}\right)^{1-\sigma} \frac{E_j}{YW} \tag{2}$$

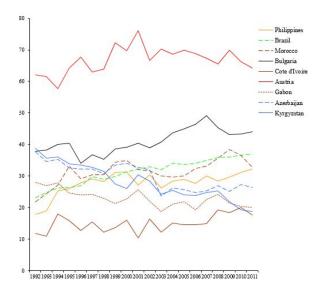
$$P_j^{1-\sigma} = \sum \left(\frac{t_{ij}}{\Pi_i}\right)^{1-\sigma} \frac{Y_i}{Y^W} \tag{3}$$

Infrastructure channels

- size component $\frac{Y_i E_j}{VW}$
 - ⇒ improvement of the overall economic outlook
- trade cost term $\frac{t_{ij}}{\prod_i P_i}$:
 - bilateral trade costs t_{ii} are a function of intranational and international trade costs $t_{ii} = f(\tau_{ii}, \tau_{ii}, \tau_{ii})$
 - ⇒ changes in the way trade is performed
 - any improvement in infrastructure will also result in additional partial effects fo trade with other countries Π_i and P_i
 - ⇒ average portion of trade costs borne by the exporter (importer) to (from) all its trading partners as well affected
 - ⇒ impact on supply capacity and market access.

& Lloyd (1975)

Empirical Approach


• Gravity model for bilateral trade between exporter i = 1, ..., Iand importer i = 1, ..., J in period t = 1992, ...2011:

Global Index of Infrastructure

- available for a large sample of developed and developing countries (up to 165 countries)
- based on a broad dataset of 30 indicators of quantity and quality of infrastructure Indicators
- unobserved component model
- 1992-2011 period
- - ICT ► Maps
 - energy → Maps
 - finance Maps

Infrastructure Change - Examples

Infrastructure (Dis-) Similarity

- bilateral component which captures similarities in infrastructure endowment and quality
- adopting the principles of the Grubel Lloyd index:

$$GLinfra_{ij} = \frac{|infra_i - infra_j|}{infra_i + infra_j} * 100$$

Empirical Approach

Motivation

• Gravity model for bilateral trade between exporter i = 1, ..., Iand importer j = 1, ..., J in period t = 1992, ...2011: $X_{iis} = exp(\mathbf{T}'_{ii.s-1}\beta + \mathbf{C}'_{i.s-1}\gamma_1 + \mathbf{C}'_{i.s-1}\gamma_2)$

-	$+ \delta_i infra_{i,s-1}$	$+\delta_{j}$ infra $_{j,s-1}+\delta_{ij}$ GL_infra $_{ij,s-1}+\mu_{ij}$	$(u_{ij}) + \epsilon_{ijs}$
where	$X_{ij,s}$	exports	IMF DOTS
	$T_{ij,s}$	time-varying trade cost vector:	
		fta, cu	Larch (2008)
		time-varying distances	Hinz(2017)
	$C_{i,s}$	country specific variables:	
		GDP p.c., Population	WDI
	infra _{i,s}	index of infrastructure	Donaubauer
			et al (2016)
	$GL_{-}infra_{ij,s}$	(dis-)similarities in infrastructure	principles of
			Grubel
			& Hovd (1975

Baseline estimation

	(1)	(2)	(3) Baseline model	(4)
$gdppc_{i,s-1}$	0.93***	0.87***	0.87***	0.81***
0 11 10-1	(0.13)	(0.14)	(0.13)	(0.14)
$gdppc_{j,s-1}$	0.73***	0.66***	0.66***	0.59***
/	(0.15)	(0.16)	(0.15)	(0.16)
$pop_{i,s-1}$	1.22***	1.18***	1.17***	1.00***
	(0.18)	(0.19)	(0.19)	(0.26)
$pop_{j,s-1}$	0.88***	0.81***	0.80***	0.97***
	(0.20)	(0.21)	(0.21)	(0.27)
$dist_{ij,s-1}^{hinz}$	-0.24	-0.34	-0.29	-0.38
utstij.s-1	(0.28)	(0.34)	(0.34)	(0.39)
$rta_{ij,s-1}$	0.20)	0.30***	0.28***	0.20***
, taij,s-1	(0.06)	(0.05)	(0.05)	(0.05)
$cu_{ij,s-1}$	0.64***	0.62***	0.61***	0.60***
cuijs-1	(0.05)	(0.05)	(0.05)	(0.04)
$infra_{i,s-1}$	(0.05)	0.23**	0.16*	0.23*
ing rules-1		(0.09)	(0.09)	(0.12)
$infra_{j,s-1}$		0.25**	0.26***	0.46***
111,7 11,8-1		(0.10)	(0.10)	(0.12)
GL $infra_{ij,s-1}$		(0.10)	0.67***	0.60***
or my ruly,s-1			(0.13)	(0.15)
$tariffs_{i,s-1}$			(0.13)	-0.01
turiff sis-1				(0.01)
$tariffs_{j,s-1}$				0.01)
curiff sjs-1				(0.01)
rol				0.01)
$rol_{i,s-1}$				
mal				(0.08)
$rol_{j,s-1}$				0.01
				(0.09)
No. of observations	351,991	291,703	291,703	119,768
Pair-fixed effects	yes	yes	yes	yes
Country-fixed effects	no	no	no	no
Time-fixed effects	yes	yes	yes	yes

Baseline estimation

	-					
		(1)	(2)	(3) Baseline model	(4)	
	$gdppc_{i,s-1}$	0.93*** (0.13)	0.87***	0.87*** (0.13)	0.81*** (0.14)	
	$gdppc_{j,s-1}$	0.73***	0.66***	0.66***	0.59***	
	$pop_{i,s-1}$	1.22*** (0.18)	1.18*** (0.19)	1.17*** (0.19)	1.00*** (0.26)	
	$pop_{j,s-1}$	0.88*** (0.20)	0.81*** (0.21)	0.80*** (0.21)	0.97*** (0.27)	
	dist _{ii.s-1}	-0.24	-0.34	-0.29	-0.38	
$infra_{i,s-1}$	22	33	0.23	}**	0.16*	0.23*
			(0.0)	(9)	(0.09)	(0.12)
$infra_{j,s-1}$			0.25	**	0.26***	0.46***
			(0.1	10)	(0.10)	(0.12)
GL $infra_{ij,s-1}$					0.67***	0.60***
					(0.13)	(0.15)
	$tariffs_{j,s-1}$				(0.01) 0.02	
	turijjsjs-1				(0.01)	
	$rol_{i,s-1}$				0.03	
					(0.08)	
	$rol_{j,s-1}$				0.01 (0.09)	
	No. of observations	351,991	291,703	291,703	119,768	
	Pair-fixed effects Country-fixed effects	yes	yes	yes	yes	
	Time-fixed effects	no ves	no yes	no yes	no yes	

Disentangling Infrastructure

- decomposition into direct and indirect effects
- two-step approach proposed by Head and Mayer (2014) to account for unilateral policies within the structural gravity model
- first step (high-dimensional PPML):

$$X_{ij,s} = \exp(\mathbf{T}'_{ij,s-1}\beta + \delta_{ij}GL_{-infra}_{ij,s-1} + \eta_{i,s} + \theta_{j,s} + \mu_{ij}) + \epsilon_{ij,s}$$

Channels

where $\eta_{i,s}/\theta_{i,s}$ are exporter/importer-time FE accounting for outward/inward MLR

second step:

$$ln(\hat{\eta_{is}}) = \alpha_0 + \bar{\beta}\bar{\mathbf{T}'}_{i,s-1} + \mathbf{C'}_{i,s-1}\gamma_i + \delta_i infra_{i,s-1} + \psi_{ijt}$$

where
$$\bar{\mathcal{T}'}_{i,s} = (1/\textit{N}) \sum_{i} \mathbf{T'}_{ij,s} \hat{\beta}$$

Two-step approach

6900	(1)	(2)	(3)	(4)	(5)	_
	First stage: Gravity estimation	Second stage: Exporter	Second stage: Importer	Second stage: Exporter	Second stage: Importer	
$gdppc_{s-1}$		0.90***	0.66***	0.87***	0.72***	
guppes=1		(0.10)	(0.11)	(0.11)	(0.14)	
pop_{s-1}		1.17***	0.81***	0.76***	1.18***	
		(0.15)	(0.17)	(0.21)	(0.22)	
$dist_{ij,s-1}^{hinz}$	-1.10***	,,	,,			
	(0.19)					
$rta_{ij,s-1}$	0.29***					
	(0.05)					
$cu_{ij,s-1}$	0.55***					
	(0.04)					
$infra_{s-1}$		0.08**	0.30**	0.07*	0.49**	
		(0.04)	(0.02)	(0.04)	(0.10)	
$GL\ infra_{ij,s-1}$	0.79***					
	(0.10)					
$tariffs_{s-1}$				-0.01	-0.05*	
				(0.02)	(0.03)	
rol_{s-1}				0.05	0.02	
				(0.07)	(0.12)	1
\bar{T}_{s-1}		-0.53*	-1.25	-1.11***	-1.43	
-3-1		(0.30)	(1.84)	(0.22)	(1.49)	
Constant		-19.17***	-11.83***	-12.46***	-18.46***	
		(2.77)	(3.20)	(3.83)	(3.99)	
No. of observations	307,286	2,536	2,536	1,414	1,414	-
R^2	0.99	0.64	0.62	0.60	0.57	
Pair-fixed effects	yes	no	no	no	no	
Country-time FE	yes	no	no	no	no	
Country-fixed effects	no	yes	yes	yes	yes	
Time-fixed effects	no	yes	yes	yes	yes	_,

Two-step approach

55	(1)	(2)	(3)	(4)	(5)	
	First stage: Gravity estimation	Second stage: Exporter	Second stage: Importer	Second stage: Exporter	Second stage: Importer	
$gdppc_{s-1}$		0.90***	0.66***	0.87***	0.72***	
pop_{s-1}		(0.10) 1.17***	(0.11) 0.81***	(0.11)	(0.14)	
$dist_{ij,s-1}^{hinz}$	-1.10***	(0.15)	(0.17)	(0.21)	(0.22)	
$rta_{ij,s-1}$	(0.19) 0.29*** (0.05)					
$cu_{ij,s-1}$	0.55***					
$infra_{s-1}$		0.08**	0.30**	0.0	7*	0.49**
		(0.04)	(0.02)	(0.0)	(4)	(0.10)
GL $infra_{ij,s-1}$	0.79*** (0.10)	*******		200		
**				(0.07)	(0.12)	1
\overline{T}_{s-1}		-0.53* (0.30)	-1.25 (1.84)	-1.11*** (0.22)	-1.43 (1.49)	
Constant		-19.17*** (2.77)	-11.83*** (3.20)	-12.46*** (3.83)	-18.46*** (3.99)	•
No. of observations	307,286 0.99	2,536 0.64	2,536 0.62	1,414 0.60	1,414 0.57	_
Pair-fixed effects Country-time FE	yes yes	no no	no no	no no	no	
Country-fixed effects Time-fixed effects	no no	yes yes	yes ves	yes ves	yes yes	

Motivation

- two ways to derive bilateral trade cost
 - trade cost calibration (odds-ratio method by Head and Ries (2010), Jacks et al (2011), Novy(2013))
 - tariff equivalent measure

$$au_{ij} \equiv \left(rac{t_{ij}\,t_{ji}}{t_{ii}\,t_{jj}}
ight)^{1/2} - 1 = \left(rac{X_{ij}X_{ji}}{X_{ii}X_{jj}}
ight)^{1/2(\sigma-1)}$$

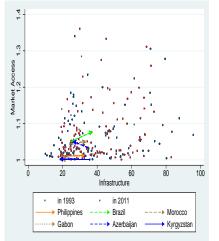
estimate trade costs:

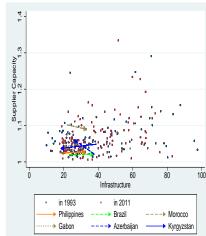
$$\hat{t_{ij,s}} = exp(\mathbf{T}_{ij}'\hat{eta} + \hat{\delta_{ij}}GL_infra_{ij,s-1} + \hat{\mu_{ij}}) + \epsilon_{ij,s}$$

determinants of trade costs

$$\tau_{ij,s} = exp(\mathbf{T}_{ij,s-1}\beta + \delta_i infra_{i,s-1} + \delta_j infra_{j,s-1} + \delta_{ij} GL_i infra_{ij,s-1} + \mu_{ij}) + \epsilon_{ij,s}$$

Bilateral Trade Cost


	(1) Calibrated trade costs	(2) Calibrated trade costs	(3) Calibrated trade costs	(4) Calibrated trade costs	(5) Estimated trade costs	(6) Estimated trade costs	(7) Estimated trade costs	(8) Estimated trade costs
$dist_{ij,s-1}^{hinz}$	-0.12***	-0.13***	-0.25***	-0.16***	-1.10***	-1.10***	-1.10***	-1.10***
1,50-1	(0.02)	(0.02)	(0.00)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)
$rta_{ij,s-1}$	0.02***	0.02***	0.11***	0.07***	0.29***	0.29***	0.29***	0.29***
.j,s-x	(0.00)	(0.00)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)
$cu_{ij,s-1}$	0.04***	0.05***	0.02***	-0.00	0.55***	0.55***	0.55***	0.55***
1,10-1	(0.00)	(0.00)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)
$infra_{i,s-1}$	0.03***	0.04***	0.20***	0.22***	0.63***	0.37***	0.16***	0.23***
, 1,5-L	(0.00)	(0.01)	(0.00)	(0.01)	(0.01)	(0.02)	(0.01)	(0.01)
$infra_{j,s-1}$	0.02***	0.03***	0.19***	0.21***	0.66***	0.39***	0.16***	0.24***
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
GL $infra_{ij,s-1}$	-0.04***	-0.05***	-0.09***	-0.06***	0.79***	0.79***	0.79***	0.79***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)
$comlang_{ij}$,	0.05***	0.07***			0.45***	0.53***
			(0.01)	(0.01)			(0.01)	(0.02)
$contig_{ij}$			0.13***	0.13***			1.19***	1.30***
-5			(0.01)	(0.01)			(0.02)	-0.03
colonyij			0.19***	0.16***			0.25***	0.39***
1250			(0.01)	(0.01)			(0.04)	(0.04)
$tariffs_{i,s-1}$		-0.02***		0.00		-0.11***	- 1 P	-0.01***
		(0.00)		(0.00)		(0.01)		(0.00)
$tariffs_{j,s-1}$		-0.01***		0.00		-0.11***		-0.01***
		(0.00)		(0.00)		(0.00)		(0.01)
$rol_{i,s-1}$		0.01**		-0.00		0.02***		0.00
		(0.00)		(0.00)		(0.01)		(0.07)
$rol_{j,s-1}$		0.02***		-0.00		0.02***		0.01
2 3 3		(0.00)		(0.00)		(0.00)		(0.01)
Constant	4.40***	4.16***	3.76***	3.56***	20.78***	14.55	7.90***	7.71***
	(0.19)	(0.16)	(0.06)	(0.01)	(0.19)	(0.00)	(0.08)	(0.07)
No. of observations	219,930	102,303	219,930	102,303	291,703	119,768	291,703	119,768
R^2	0.27	0.38	0.40	0.45	0.86	0.91	0.76	0.78
Pair-fixed effects	yes	yes	no	no	yes	yes	no	no
Country-fixed effects	no	no	yes	yes	no	no	yes	yes
Time-fixed effects	yes	yes	yes	yes	yes	yes	yes	yes

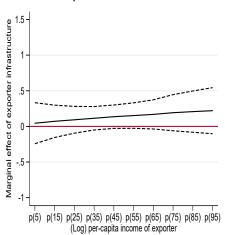

Bilateral Trade Cost

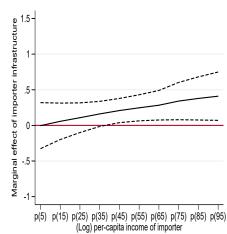
<u> </u>	(1) Calibrated trade costs	(2) Calibrated trade costs	(3) Calibrated trade costs	(4) Calibrated trade costs	(5) Estimated trade costs	(6) Estimated trade costs	(7) Estimated trade costs	(8) Estimated trade costs
$dist_{ij,s-1}^{hinz}$	-0.12***	-0.13***	-0.25***	-0.16***	-1.10***	-1.10***	-1.10***	-1.10***
1,50-1	(0.02)	(0.02)	(0.00)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)
$rta_{ij,s-1}$	0.02***	0.02***	0.11***	0.07***	0.29***	0.29***	0.29***	0.29***
1,50-X	(0.00)	(0.00)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)
$cu_{ij,s-1}$	0.04***	0.05***	0.02***	-0.00	0.55***	0.55***	0.55***	0.55***
-21-	(0.00)	(0.00)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)
$infra_{i,s-1}$	0.03***	0.04***	0.20***	0.22***	0.63***	0.37***	0.16***	0.23***
4000-000,000	(0.00)	(0.01)	(0.00)	(0.01)	(0.01)	(0.02)	(0.01)	(0.01)
$infra_{j,s-1}$	0.02***	0.03***	0.19***	0.21***	0.66***	0.39***	0.16***	0.24***
	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
GL $infra_{ij,s-1}$	-0.04***	-0.05***	-0.09***	-0.06***	0.79***	0.79***	0.79***	0.79***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)
$comlang_{ij}$			0.05***	0.07***			0.45***	0.53***
700.			(0.01)	(0.01)			(0.01)	(0.02)
$fra_{i,s-1}$	0.03***	0.04***	0.20***	0.22***	0.63***	0.37***	0.16*	** 0.23**
	(0.00)	(0.01)	(0.00)	(0.01)	(0.01)	(0.02)	(0.01	(0.01)
$fra_{j,s-1}$	0.02***	0.03***	0.19***	0.21***	0.66***	0.39***	0.16*	** 0.24**
1,5-1	11000000000		F1000000000000000000000000000000000000					
	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01	(0.01)
$Linfra_{ij,s-1}$	-0.04***	-0.05***	-0.09***	-0.06***	0.79***	0.79***	0.79*	** 0.79**
7	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00	0.00)
$rol_{j,s-1}$		0.02***		-0.00 (0.00)		0.02***		0.01 (0.01)
Constant	4.40***	4.16***	3.76***	3.56***	20.78***	14.55	7.90***	7.71***
	(0.19)	(0.16)	(0.06)	(0.01)	(0.19)	(0.00)	(0.08)	(0.07)
No. of observations R ²	219,930 0.27	102,303 0.38	219,930 0.40	102,303 0.45	291,703 0.86	119,768 0.91	291,703 0.76	119,768 0.78
Pair-fixed effects	yes	yes	no	no	yes	yes	no	no
Country-fixed effects	s no	no	yes	yes	no	no	yes	yes
Time-fixed effects	yes	yes	yes	yes	yes	yes	yes	yes

Average Trade Cost

- multilateral trade costs can be derived following Larch and Yotov (2016)
- Change from 1993 to 2011 for selected countries

Intra- vs. International Trade


 add internal trade and internal distances to explicitly account for intra-national trade


$$\begin{aligned} X_{ijs} = & exp(\mathbf{T'}_{ij,s-1}\beta + \mathbf{C'}_{i,s-1}\gamma_1 + \mathbf{C'}_{j,s-1}\gamma_2 \\ &+ \delta_i infra_{i,s-1} + \delta_j infra_{j,s-1} + \delta_{ij} GL_infra_{ij,s-1} + \mu_{ij}) + \\ &exp(\delta_0 intra_{ii} + \delta_{0i} intra_{ii} xinfra_{i,s-1}) + \epsilon_{ijs} \end{aligned}$$

	(1)	(2)	(3)	(4)
		Intra- vs. inte	rnational trade	
$infra_{i,s-1}$	0.20**	1.04***	0.20**	1.06***
	(0.09)	(0.11)	(0.09)	(0.12)
$infra_{j,s-1}$	0.31***	1.05***	0.31***	1.07***
	(0.09)	(0.12)	(0.09)	(0.12)
$GL infra_{ij,s-1}$	0.72***	0.25	0.72***	0.28*
	(0.12)	(0.16)	(0.12)	(0.16)
$intra_{ii}$		10.68***		9.86***
		(0.54)		(0.67)
$intra_{ii} \times infra_{i,s-1}$	-0.62***	-1.76***	-0.60***	-1.80***
	(0.19)	(0.11)	(0.19)	(0.12)
$intra_{ii} \times dist_{ii.s-1}^{hins}$			-0.90*	0.14*
			(0.49)	(0.08)
No. of observations	291,703	291,703	291,703	291,703
Pair-fixed effects	yes	no	yes	no
Country-fixed effects	no	yes	no	yes
Time-fixed effects	ves	ves	ves	ves

Interaction with Income

 Does the importance of infrastructure for trade vary with per capita income?

Infrastructure Categories

	(1) Total	(2)	(3)	(4)	(5)
	Infrastructure	Transport	Communication	Energy	Finance
Infra_i	0.16*	0.26***	0.40***	-0.05	0.04
	(0.09)	(0.06)	(0.05)	(0.13)	(0.05)
Infra_j	0.26***	0.27***	0.16	-0.06	0.23***
	(0.10)	(0.06)	(0.05)	(0.13)	(0.05)
GL Infra	0.67***	0.04	0.55***	-0.00	0.10
	(0.13)	(0.06)	(80.0)	(0.15)	(0.07)
Observations	291,703	335,199	329,506	242,302	241,212
Number of pv	18,783	19,012	19,024	13,644	18,436
Pair FE	YES	YES	YES	YES	YES
Country FE	NO	NO	NO	NO	NO
Time FE	YES	YES	YES	YES	YES

Trade Categories

·	(1)	(2)	(3)
	Intermediate	Capital	Consumption
	goods	goods	goods
$gdppc_{i,s-1}$	0.77***	1.18***	0.81***
	(0.13)	(0.18)	(0.11)
$gdppc_{j,s-1}$	0.72***	0.54***	0.32*
	(0.13)	(0.18)	(0.17)
$pop_{i,s-1}$	0.86**	1.44**	0.51
	(0.42)	(0.63)	(0.46)
$pop_{j,s-1}$	0.34	1.40**	1.12**
	(0.44)	(0.64)	(0.44)
$dist_{ij,s-1}^{hinz}$	-0.09	0.25	0.03
11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	(0.71)	(0.86)	(0.65)
$rta_{ij,s-1}$	0.24***	0.44***	0.19***
01. 5 .00.0070	(0.05)	(0.08)	(0.06)
$cu_{ij,s-1}$	0.50***	0.57***	0.53***
(T)(1)	(0.04)	(0.06)	(0.06)
$infra_{i,s-1}$	0.42***	0.32	-0.25
	(0.14)	(0.23)	(0.15)
$infra_{j,s-1}$	0.35**	0.61***	0.82***
353	(0.14)	(0.22)	(0.16)
$GL\ infra_{ij,s-1}$	0.98***	0.71**	0.50**
<u> </u>	(0.23)	(0.33)	(0.23)
No. of observations	24,173	24,173	24,173
Pair-fixed effects	yes	yes	yes
Country-fixed effects	no	no	no
Time-fixed effects	yes	yes	yes

Trade Categories

	(1) Intermediate goods	(2) Capital goods	(3) Consumption goods	
$gdppc_{i,s-1}$	0.77*** (0.13)	1.18***	0.81*** (0.11)	
$gdppc_{j,s-1}$	0.72*** (0.13)	0.54***		
$pop_{i,s-1}$	0.86** (0.42)	1.44**	0.51 (0.46)	
$pop_{j,s-1}$	0.34 (0.44)	1.40** (0.64)	1.12** (0.44)	
$dist_{ij,s-1}^{hinz}$	-0.09 (0.71)	0.25 (0.86)	0.03 (0.65)	
$infra_{i,s-1}$	0.42**	k*	0.32	-0.25
· · · · · · · ·	(0.14		(0.23)	(0.15)
$infra_{j,s-1}$	0.35* (0.14		(0.22)	0.82*** (0.16)
$GL\ infra_{ij,s-1}$	0.98**		0.71** (0.33)	0.50** (0.23)
	2000		100000000000000000000000000000000000000	C. 33 (12) (12)

No. of observations	24,173	24,173	24,173
Pair-fixed effects	yes	yes	yes
Country-fixed effects	no	no	no
Time-fixed effects	ves	yes	yes

Other Robustness Checks

- extended lags
- excluding pairs with major trading partners

Conclusion

- overall there are significant positive effects of infrastructure on trade
- the choice between domestic and international sourcing critically depends on the importing country's infrastructure
- improving infrastructure reduces trade cost: similarly strong effects on bilateral trade costs for the exporter and the importer
- countries with improved infrastructure reduced not only bilateral trade costs but also multilateral trade costs (i.e. average trade costs with all other trading partners).
- a good mix of infrastructure is what matters most for promoting bilateral trade
- missing infrastructure explains part of missing trade flows

Outlook: Effects on FDI

 similar approach for FDI using a micro-founded gravity FDI framework resembling the trade gravity model

$$extit{FDI}_{ij} = egin{cases} rac{eta\phi^2\eta_i^2}{1-eta+eta\delta_M}\omega_{ij}rac{E_i}{P_i}rac{Y_j}{M_i} & ext{if } extit{FDI}_{ij} > 1 \ 0 & ext{if } extit{FDI}_{ij} \leq 1 \end{cases}$$

- significant positive effects of infrastructure on FDI
- Hypothesis: infrastructure reduces investment frictions in developing countries

Appendix

- Infrastructure Indicators
- UCM
- Infrastructure maps
 - Transport maps
 - ICT maps
 - Energy maps
 - Finance maps

Multilateral Trade Cost

Motivation

- Solving the gravity framework for the multilateral resistance terms requires a normalization of the multilateral resistance terms.
- normalization corresponding to U.S. fixed effects
- following Anderson et al. (2015) and Larch and Yotov (2016), we recover the outward and inward multilateral trade costs as

$$\hat{\Pi}_{i,s}^{1-\sigma} = Y_{i,s} exp(-\hat{\eta}_{i,s}) E_{US,s}$$

and

$$\hat{P}_{i,s}^{1-\sigma} = E_{i,s} exp(-\hat{\theta}_{i,s}) 1/E_{US,s}$$

√ back

Transport Infrastructure

Land	Roads, total network Roads paved Motorways Registered passenger cars Commercial vehicles Railways, good transported Rail lines Railways, passengers carried	km/area % of total roads % of total roads p.c. p.c. tons*km/area km/density p.c.	World Bank/ IRF World Bank/ IRF IRF VDA VDA World Bank World Bank World Bank
Air	Air transport, carrier departures Air transport, freight	p.c. tons*km/area	World Bank World Bank
Sea	Total ship carrying capacity Share of ship carrying capacity	tons/area % of world capacity	UNCTAD UNCTAD

Information and Communication Technology

Telephone	Fixed telephone lines Faults to fixed telephone lines ISDN subscriptions Mobile telephone subscriptions	p.c. %, (-1) p.c. p.c.	ITU ITU ITU ITU
Computer & Internet	Internet users	p.c.	World Bank
	Personal Computers	p.c.	ITU

Energy

Production & Consumption	Electric power consumption Electric production	•	World Bank World Bank
Availably & Quality	Electric power transmission and distribution losses	p.c.	World Bank

Finance

Access	Publicly listed companies	p.c.	Beck and Demirgüc-Kunt (2009)
	Bank Accounts Value traded	p.c. share traded outside of top ten companies in a stock market exchange, logged	GFDD GFDD
Depth	Stock market total value traded	shares traded/GDP, logged.	Beck and Demirgüc-Kunt (2009)
	Money and quasi money	% of GDP, logged	World Bank
Efficiency	Stock market turnover	shares traded/market capitalization, logged	GFDD
Stability	Bank Z-Score Stock price volatility	logged logged, (-1)	GFDD GFDD

Unobserved Component Model (UCM)

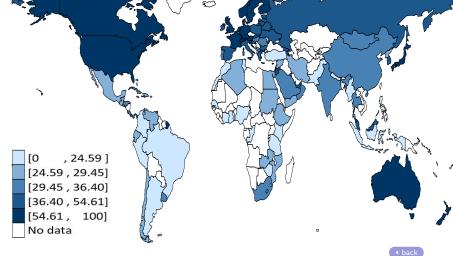
$$y_{cj} = \alpha_j + \beta_j (I_c + \varepsilon_{cj}) \tag{4}$$

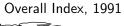
where: y_{cj} observed infrastructure score of country $c \in [1, C]$ and indicator $j \in [1, J]$; each indicator j is rescaled to range from 0 to 1 I_c unobserved and imperfect measure of infrastructure; $I_c \sim N(0, 1)$ error term; i.i.d. with $E[\varepsilon_{cj}] = 0$, $var(\varepsilon_{cj}) = \sigma_j^2$ and $E[\varepsilon_{ci}\varepsilon_{cj}] = 0$ for $i \neq j$; I_c and ε_{ci} are jointly normally distributed

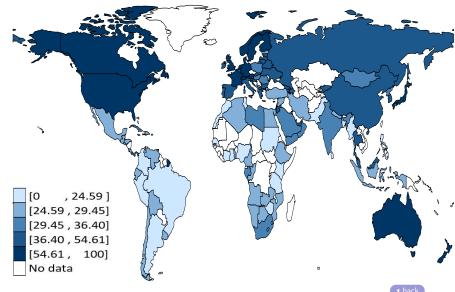
• Estimated by Maximum Likelihood subject to α_j , β_j and σ_i^2

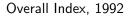
CalculationUnobserved Component Model (UCM)

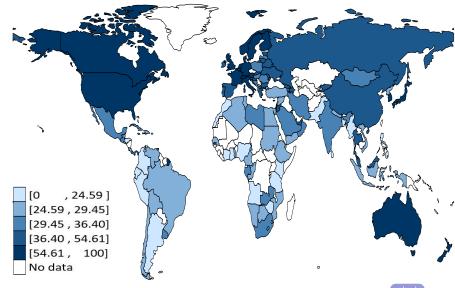
Our index is calculated as:

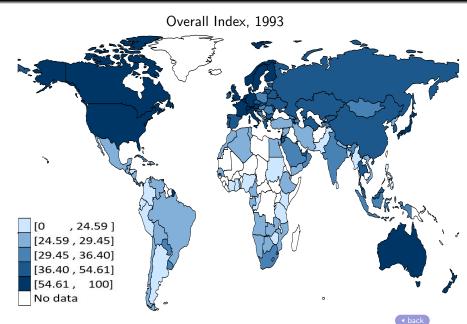

$$E[I_c \mid y_{c1}, \cdots, y_{cJ}] = \sum_{j=1}^{J} w_{cj} \frac{y_{cj} - \alpha_j}{\beta_j}$$
 (5)

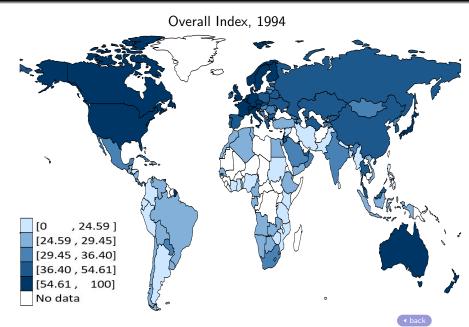

with weight
$$w_{cj} = \frac{\sigma_j^{-2}}{1 + \sum_{j=1}^{J} \sigma_j^{-2}}$$
 (6)

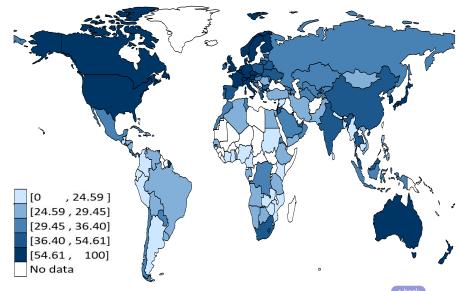

- Index $I_c \sim N(0,1)$ in each period
- Time adjustment: Backward rescaling of I_c as if we had the same country sample relative to the following year

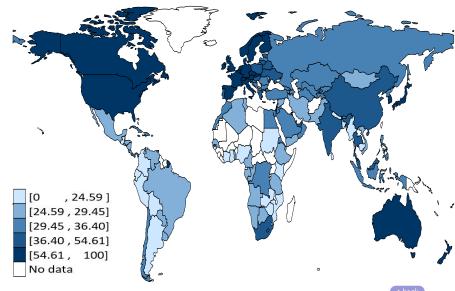


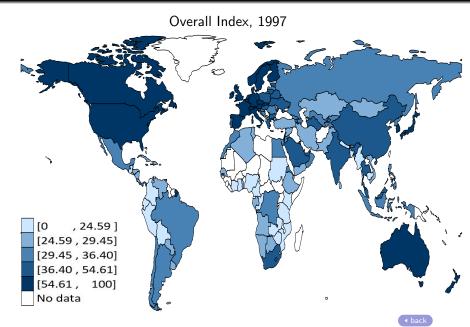


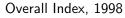


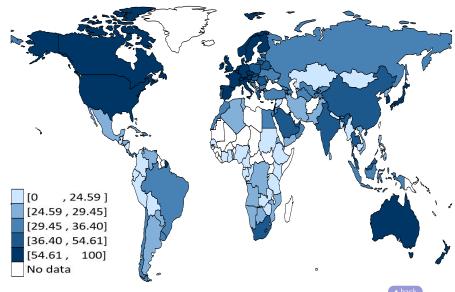


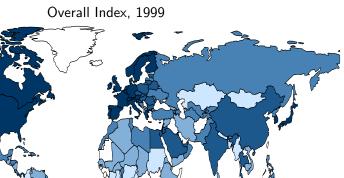


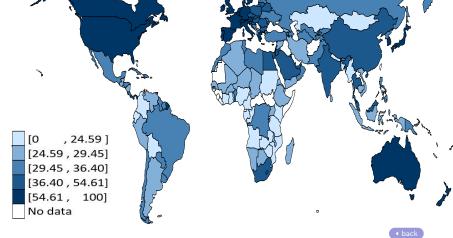


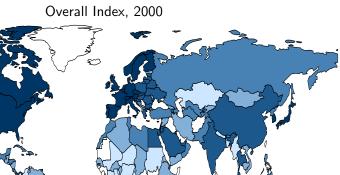


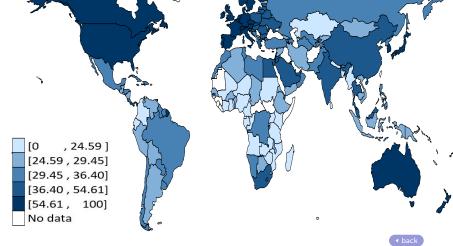




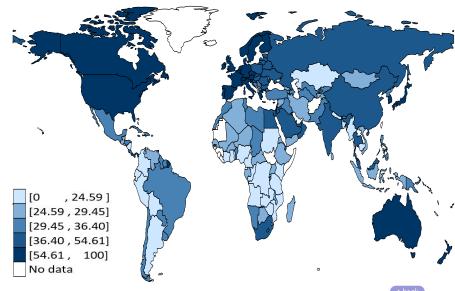


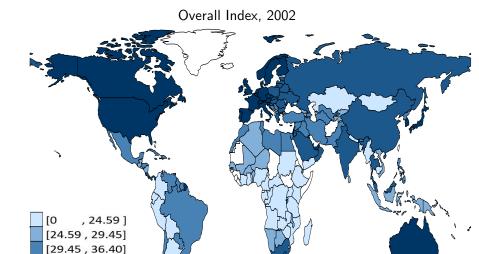


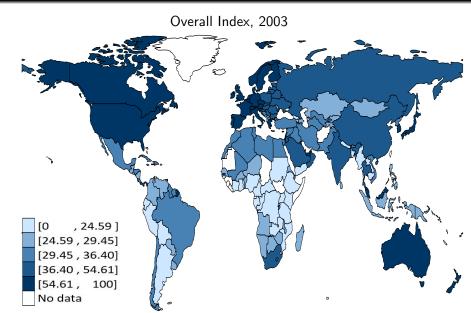


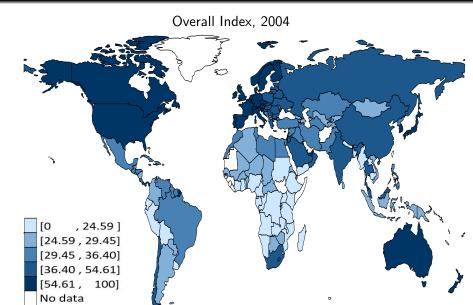


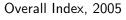


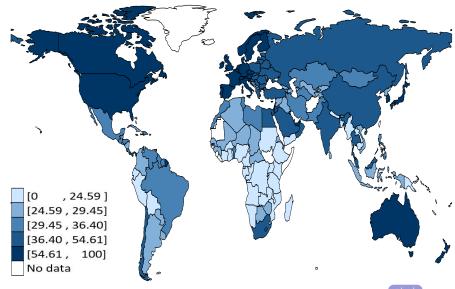


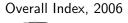


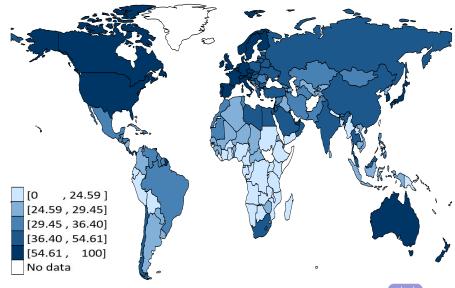


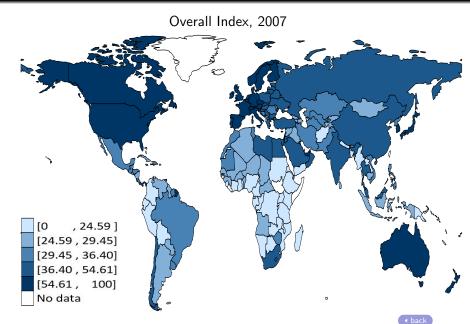


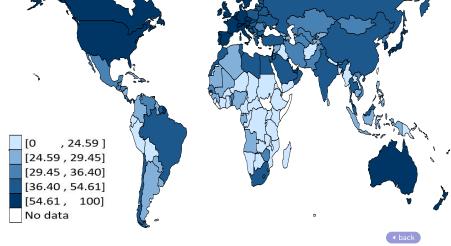


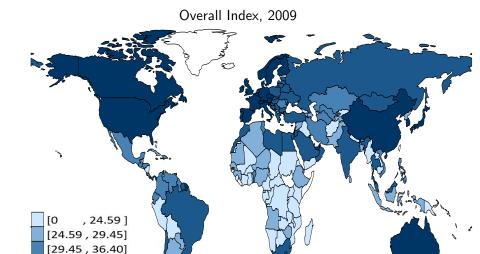


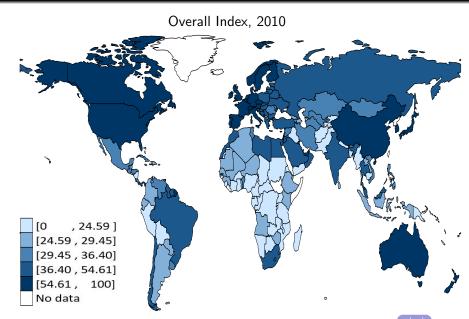

[36.40 , 54.61] [54.61 , 100] No data

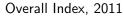


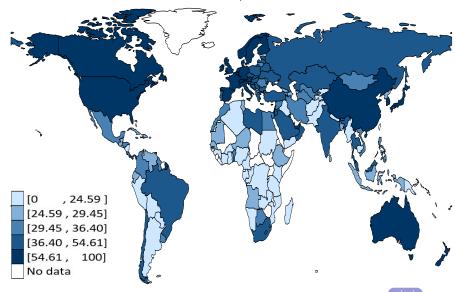


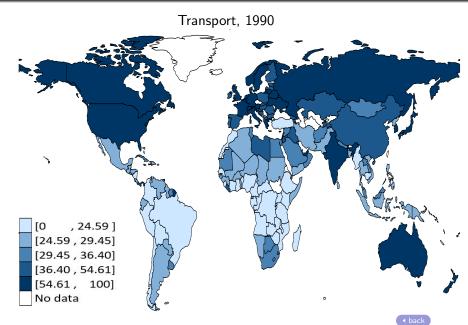




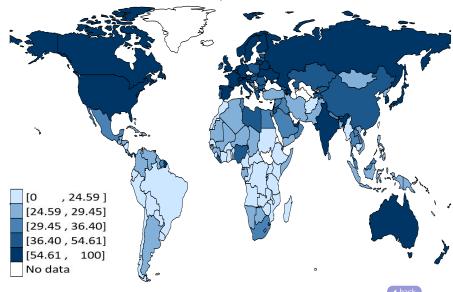


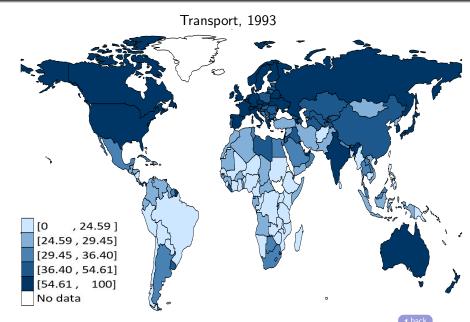


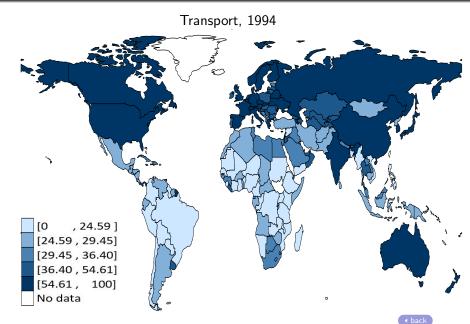


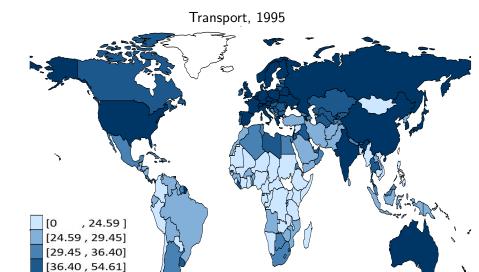


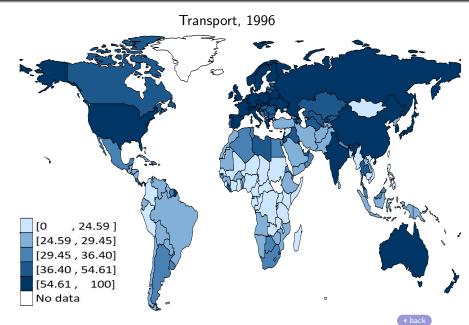
[36.40 , 54.61] [54.61 , 100] No data

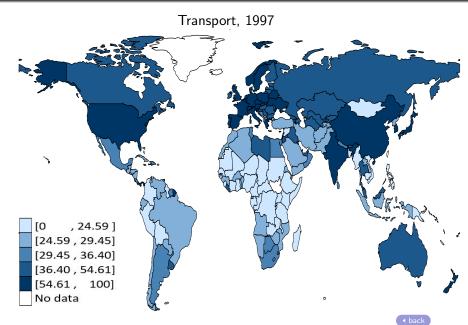


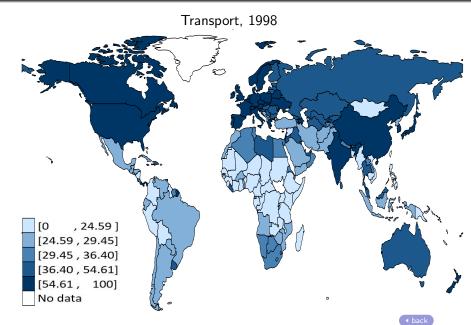


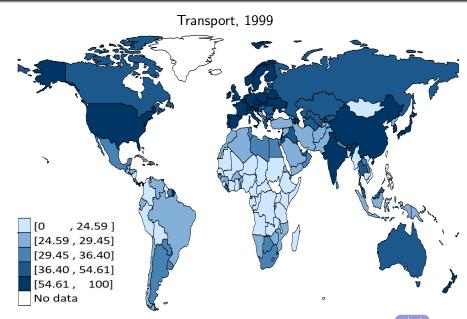


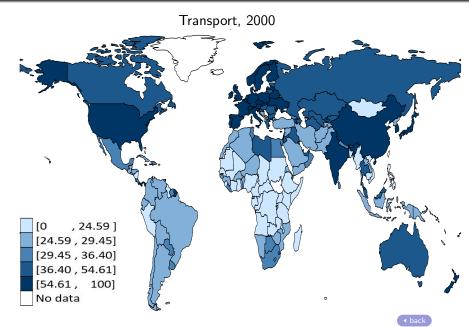











[54.61 , 100] No data

