

Date 19-11-2012 | 1

Structural Change in Russia: How Gas Burns Productivity

The Russian economy in 1995-2009

Ilya B. Voskoboynikov

Prepared for the WIIW Working Seminar, November 19, 2012

faculty of economics and business

groningen growth and development centre

Date 19-11-2012 | 2

Structural Change in Russia: How Gas Burns Productivity

The paper is based on the database of the Russia KLEMS project for international comparisons of productivity...

- Groningen Growth and Development Centre, the University of Groningen (<u>www.ggdc.net</u>)
- The Laboratory for Research in Inflation and Growth, National Research University Higher School of Economics

...which is a part of the World KLEMS initiative (<u>www.worldklems.net</u>)

Sources of economic growth - conceptualization

"Утро пятилетки", Я. Ромас, 1930 [The Mourning of the Five-Year Plan, J. Romas, 1930]

Sources of economic growth

- Growth of labour and capital
- Diminishing of real costs of production per unit of output or Multifactor Productivity (MFP) growth

Industrial Growth Accounting

Decomposition of growth into the sum of contributions of inputs and MFP

Solow (1957); Jorgenson and Griliches (1967); Jorgenson, Gollop & Fraumeni (1987); Jorgenson, Ho & Stiroh (2005)

Debate: if Russian Growth is Extensive or Intensive?

Extensive (e.g. Connolly 2011)

- Depends on the level of Oil & Gas prices
- Fuelled by investments, which are financed by windfall profits
 - Substantial capital contribution is expected in Growth Accounting

Intensive (e.g. Kuboniwa 2011)

- Multifactor Productivity is the most important source of growth

Motivation - to Solve the Debate with Better Data and Methods

 Industrial Growth Accounting – new for Russia

university of groningen

Data. Summary

	Concept	Sources	Imputations
Output	Real Value Added	SNA	 1995-2004: transformation of official nominal and real VA into the OKVED/NACE 1.0 classification 2002-2009: official data (Rosstat 2010)
Labour	FTE jobs	SNA, BLF, Regular Firm Surveys	 1995-2004: BLF, breaking down with firm surveys. 2003-2009: SNA data on hours worked and FTE-jobs
Capital	Capital services	Investm., BFA, firm survey F11, inv. price indices	 1995-2004: transformation of nominal investments into OKVED/NACE 1.0 with the official bridge; Calculations of capital services according to (Jorgenson, Griliches 1967)
Share of labour compen- sation	Labour comp./ VA ratio	SNA, RLMS	 Correction on labour compensation of self-employed. Correction on difference in wages of self-employed and employee. Distribution of shadow wages by industries.

INDUSTRIAL LEVEL: Market economy

Why does the growth accounting literature overlook capital contribution?

We document the influence of consequent data improvements on growth accounting.

1. Replication of the growth accounting literature:

- fixed depreciation 5%;
- official investment price indices;
- fixed shares of factors
 - 0.3 capital, 0.7 labour

=> *MFP* contributes more than 3 of 3.7p.p.

INDUSTRIAL LEVEL: Market economy

Why does the growth accounting literature overlook capital contribution?

2. Improvements of investment deflators:

- official investment deflators overestimate inflation (Bessonov, Voskoboynikov 2008)
- the alternative is the official PPI in Construction
 - differs by types of assets
 - does not suffer from the investment deflator biases;
- \Rightarrow MFP contribution falls to 2.3 p.p.
- \Rightarrow Capital contrib. increases to 0.9 p.p.

INDUSTRIAL LEVEL: Market economy

Why does the growth accounting literature overlook capital contribution?

3. More accurate shares of factors:

- Instead of fixed shares we use more accurate measures of shares of factors, which vary
 - across industries and in time
 - On the average the contribution of labour falls from 0.7 to 0.54
- \Rightarrow MFP contribution falls to 1.7 p.p.
- \Rightarrow Capital contrib. increases to 1.7 p.p.

INDUSTRIAL LEVEL: Market economy

Why does the growth accounting literature overlook capital contribution?

4. More accurate depreciations:

- Instead of fixed depreciations we use data from (Fraumeni 1997)
 - varies across industries and in time
 - for buildings dep. falls from 0.5 to 0.3
 - for mach. Equipm. Dep.goes up from 0.5 to 0.12.
- \Rightarrow MFP contribution increases to 1.9 p.p.
- \Rightarrow Capital contrib. falls to 1.5 p.p.

Why does the growth accounting literature overlook capital contribution?

5. Capital services instead of stocks:

- Weights of capital growth rates by types of assets depend on depreciation, interest rates and investment deflators
 - The role of short-living assets (Machinery and Eq. and ICT) has increased.
- \Rightarrow MFP contribution falls to 1.6 p.p.
- \Rightarrow Capital contrib. increases to 1.8 p.p.

Being better measured, capital as much important for growth as MFP.

Example: Forestry, Logging and Related Services

Contributions to VA growth rates in 1995-2009 (pp.)

INDUSTRIAL LEVEL: Industry "Forestry, logging and Related Services"

Why does the growth accounting literature overlook capital contribution?

- 1. Replication of the growth accounting literature
- 2. Improvements of investment deflators
- 3. More accurate shares of factors
- 4. More accurate depreciations:
- 5. Capital services instead of stocks

Being better measured, capital explains more than half of output growth.

Sectoral Structure and Sources of Growth

Sectors and industries (NACE 1.0)

- Skills are important for adaptation of new technologies/MFP growth rates
 - Taxonomy of O'Mahony and van Ark (2003)
- Gas includes *Fuel*, *Mining and Wholesale Trade* because of nonmarket reallocation of value added among them (World Bank 2005)
 - Transfer pricing
 - Vertical integration
- Non-market economy is skipped
 - Hard to measure productivity

MARKET ECONOMY

Goods	Services	Gas
High Skill-	High Skill-	Fuel
Intensive	Intensive	Mining
Chemicals	Fin. Intermed.	Wholesale
Other Machin.	Air trnsp.	trade
Electr. Equip.	Rent&Bus. Serv.	
Low Skill-	Low Skill-	
Intensive	Intensive	
Agriculture	Utilities	
Food & Bev.	Construction	
Textiles	Retail Trade	
Metal	Inland transport	
Transp. Equip.	Post & Telecom	

. . .

Sectoral Structure and Sources of Growth/Capital

1.LS-Int. Serv. & Gas contribute most to aggregate capital growth

Contribution to total capital gr. rates in 1995-2009 (pp)

	1995-2009
M. Economy	1.77
HS-Int. Gds	0.00
LS-Int. Gds	0.14
HS-Int. Srv.	0.14
LS Int. Srv.	0.82
Gas	0.67

Goods	Services	<u>Gas</u>
High Skill-	High Skill-	Fuel
Intensive	Intensive	Mining
Chemicals	Fin. Intermed.	Wholesale
Other Machin.	Air trnsp.	trade
Electr. Equip.	Rent&Bus. Serv.	
Low Skill-	Low Skill-	
Intensive	Intensive	
Agriculture	Utilities	
Food & Bev.	Construction	
Textiles	Retail Trade	
Metal	Inland transport	
Transp. Equip.	Post & Telecom	
•••	•••	

Sectoral Structure and Sources of Growth/MFP

2. HS-Int. Services contribute most to aggregate MFP growth

Contribution to total capital gr. rates in 1995-2009 (pp)

	1995-2009
M. Economy	1.62
HS-Int. Gds	0.12
LS-Int. Gds	0.38
HS-Int. Srv.	0.86
LS Int. Srv.	0.22
Gas	0.05

Goods	Services	Gas
High Skill-	High Skill-	Fuel
Intensive	Intensive	Mining
Chemicals	Fin. Intermed.	Wholesale
Other Machin.	Air trnsp.	trade
Electr. Equip.	Rent&Bus. Serv.	
Low Skill-	Low Skill-	
Intensive	Intensive	
Agriculture	Utilities	
Food & Bev.	Construction	
Textiles	Retail Trade	
Metal	Inland transport	
Transp. Equip.	Post & Telecom	
• • •		

Sectoral Structure and Sources of Growth/MFP

3. Gas is least productive and...

Contribution to total capital gr. rates in 1995-2009 (pp)

	1995-2009
M. Economy	1.62
HS-Int. Gds	0.12
LS-Int. Gds	0.38
HS-Int. Srv.	0.86
LS Int. Srv.	0.22
Gas	0.05

Goods	<u>Services</u>	<u>Gas</u>
High Skill-	High Skill-	Fuel
Intensive	Intensive	Mining
Chemicals	Fin. Intermed.	Wholesale
Other Machin.	Air trnsp.	trade
Electr. Equip.	Rent&Bus. Serv.	
Low Skill-	Low Skill-	
Intensive	Intensive	
Agriculture	Utilities	
Food & Bev.	Construction	
Textiles	Retail Trade	
Metal	Inland transport	
Transp. Equip.	Post & Telecom	
•••	•••	

Sectoral Structure and Sources of Growth/MFP

3...expanding which slowdowns aggregate MFP growth.

Value added shares in 1995-2009 (%)

	1995	2009
M. Economy	100.0	100.0
HS-Int. Gds	4.2	3.5
LS-Int. Gds	25.6	17.0
HS-Int. Srv.	6.4	15.4
LS Int. Srv.	40.5	37.4
Gas	23.4	26.8

Goods	Services	Gas
High Skill-	High Skill-	Fuel
Intensive	Intensive	Mining
Chemicals	Fin. Intermed.	Wholesale
Other Machin.	Air trnsp.	trade
Electr. Equip.	Rent&Bus. Serv.	
Low Skill-	Low Skill-	
Intensive	Intensive	
Agriculture	Utilities	
Food & Bev.	Construction	
Textiles	Retail Trade	
Metal	Inland transport	
Transp. Equip.	Post & Telecom	
•••	•••	

university of groningen

Conclusion: what is Russian growth about?

Economic growth in Russia in 1995-2009 is driven by

- Capital in Gas & Low Skill-intensive Services
- MFP in High Skill Intensive Services
- Gas slowdowns aggregate MFP growth

university of groningen

faculty of economics and business groningen growth and development centre

Date 19-11-2012 | 18

Thank you for your attention

PAPERS:

Voskoboynikov, Ilya B. 2012. "New Measures of Output, Labor and Capital in Industries of the Russian Economy." GGDC Research Memorandum GD-123. <u>www.ggdc.net</u>

Voskoboynikov, Ilya B. "Structural change in Russia: how gas burns productivity. "Available by request

PROJECTS IN PROGRESS:

Structural change and productivity growth in CEE and Russia (Russia KLEMS and EU KLEMS data)

Gas only? What Russia is in global value chains (WIOD-based).

Theoretical framework. Industrial growth accounting

(Jorgenson, Gollop, Fraumeni 1987)

(1) $Z_j = g_j(K_j, L_j, T)$

(2)
$$\Delta \ln A_j^Z \equiv \Delta \ln Z_j - \bar{v}_{K,j}^Z \cdot \Delta \ln K_j - \bar{v}_{L,j}^Z \cdot \Delta \ln L_j$$

(3)
$$v_{K,jt}^{Z} = \frac{p_{jt}^{K}K_{jt}}{p_{jt}^{Z}Z_{jt}};$$
 $v_{L,jt}^{Z} = \frac{p_{jt}^{L}L_{jt}}{p_{jt}^{Z}Z_{jt}}$ $\bar{v}_{;jt}^{Z} = \frac{1}{2} \left(\bar{v}_{;jt}^{Z} + \bar{v}_{;jt-1}^{Z} \right)$

(4)
$$\Delta \ln Z \equiv \sum_{j} \bar{v}_{j}^{Z} \cdot \Delta \ln Z_{j}$$

(5)
$$v_{jt}^{Z} = \frac{p_{jt}^{Z} z_{jt}}{\sum_{j} p_{jt}^{Z} z_{jt}}; \qquad \bar{v}_{jt}^{Z} = \frac{1}{2} \left(\bar{v}_{jt}^{Z} + \bar{v}_{jt-1}^{Z} \right)$$

Date 19-11-2012 | 20

Theoretical framework. Capital

(Jorgenson, Gollop, Fraumeni 1987)

(A1)
$$\Delta \ln K_j = \sum_{k=1}^{Nk} \bar{v}_{kj}^K \cdot \Delta \ln S_{kj};$$

(A2)
$$v_{kj}^{K} = \frac{p_{k}^{K} \cdot S_{kj}}{\sum_{k=1}^{Nk} p_{k}^{K} \cdot S_{kj}}$$
; $\bar{v}_{kj}^{K} = \frac{1}{2} \left(v_{kj,t}^{K} + v_{kj,t-1}^{K} \right)$

(A3)
$$p_{k,t}^{K} = p_{k,t-1}^{I} \cdot r_{t} + \delta_{k} \cdot p_{k,t}^{I}$$

(A4)
$$S_{k,t} = \sum_{\tau=0}^{\infty} (1 - \delta_k)^{\tau} \cdot I_{k,t-\tau} = \sum_{\tau=0}^{t-Tb-1} (1 - \delta_k)^{\tau} \cdot I_{k,t-\tau} + (1 - \delta_k)^{t-Tb} \cdot S_{k,Tb}.$$

Why does the growth accounting literature overlook capital contribution?

- 1. Replication of the growth accounting literature
- 2. Improvements of investment deflators
- 3. More accurate shares of factors
- 4. More accurate depreciations:
- 5. Capital services instead of stocks

Being better measured, capital explains more than half of output growth.

Example: Forestry, Logging and Related Services

Contributions to VA growth rates in 1999-2008 (pp.)

INDUSTRIAL LEVEL: Industry "Forestry, logging and Related Services"

Why does the growth accounting literature overlook capital contribution?

- 1. Replication of the growth accounting literature
- 2. Improvements of investment deflators
- 3. More accurate shares of factors
- 4. More accurate depreciations:
- 5. Capital services instead of stocks

Being better measured, capital explains more than half of output growth.